1/3x^2+1/2y^2实现带armijo梯度下降法代码并显示轨迹图
时间: 2023-06-19 18:09:03 浏览: 87
以下是使用Armijo梯度下降法来最小化函数1/3x^2+1/2y^2的代码,并绘制出轨迹图。这里我们使用Python和matplotlib库来编写代码。
```python
import numpy as np
import matplotlib.pyplot as plt
# 定义函数f(x,y) = 1/3x^2 + 1/2y^2
def f(x, y):
return 1/3 * x**2 + 1/2 * y**2
# 定义梯度函数grad(x,y)
def grad(x, y):
return np.array([2/3 * x, y])
# 定义Armijo梯度下降法函数armijo(x, y, alpha, beta)
def armijo(x, y, alpha, beta):
# 初始化参数
x_list = [x]
y_list = [y]
alpha_list = [alpha]
beta_list = [beta]
epsilon = 1e-8
max_iter = 10000
iter_num = 0
while True:
# 计算梯度
g = grad(x, y)
# 计算步长
t = 1
while f(x - t * g[0], y - t * g[1]) > f(x, y) - alpha * t * np.dot(g, g):
t *= beta
# 更新参数
x = x - t * g[0]
y = y - t * g[1]
# 记录参数和参数变化情况
x_list.append(x)
y_list.append(y)
alpha_list.append(t)
beta_list.append(beta)
# 判断是否收敛
if np.linalg.norm(grad(x, y)) < epsilon or iter_num > max_iter:
break
iter_num += 1
return x_list, y_list, alpha_list, beta_list
# 运行Armijo梯度下降法函数
x_list, y_list, alpha_list, beta_list = armijo(2, 2, 0.25, 0.5)
# 绘制轨迹图
fig, ax = plt.subplots()
ax.set_aspect('equal')
x = np.linspace(-3, 3, 100)
y = np.linspace(-3, 3, 100)
X, Y = np.meshgrid(x, y)
Z = f(X, Y)
ax.contour(X, Y, Z, 50)
ax.plot(x_list, y_list, 'r.-')
ax.set_xlabel('x')
ax.set_ylabel('y')
plt.show()
```
运行代码后,将会显示出函数的轮廓线以及最小化函数的轨迹。可以根据需要调整初始参数和Armijo梯度下降法的参数来探索更多不同的轨迹。
阅读全文