PID->calculate = PID->kp*PID->error+ idx*PID->ki*PID->integral + PID->kd*(PID->error-PID->error_last)

时间: 2023-07-02 18:03:47 浏览: 88
这一个PID控制算法的公式,用于计算输出值。其中,kp是比例系数,ki是积分系数,kd是微分系数。error代表当前误差,error_last代表上一次的误差,integral代表积分项,idx是采样间隔时间。按照公式,PID控制器的输出值等于比例项、积分项和微分项的加权和。比例项反映了当前误差的大小,积分项反映了误差的历史累积,微分项反映了误差变化的速率。PID控制器的目标是通过调整比例系数、积分系数和微分系数,使得输出值能够尽可能地接近设定值,从而实现控制目标。
相关问题

if(PID->calculate > PID->max) { PID->calculate = PID->max; } else if(PID->calculate < PID->min) { 10 PID->calculate = PID->min;

这段代码是一个 PID 控制器中的代码片段,主要作用是对 PID 控制器计算结果进行限幅操作,确保计算结果在一定范围内,避免输出过大或过小的情况。具体解释如下: 如果 PID 计算结果大于设定的最大值(PID->max),则将 PID 计算结果设为最大值(PID->calculate = PID->max); 如果 PID 计算结果小于设定的最小值(PID->min),则将 PID 计算结果设为最小值(PID->calculate = PID->min)。 这段代码主要用于控制系统中的输出限幅,确保输出值在合理范围内,避免系统出现不稳定的情况。

void Calculate_Key(KeyDef *p, uint16_t *key_reg, uint8_t bit, GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin) { if(HAL_GPIO_ReadPin(GPIOx,GPIO_Pin) == 0) p->LastStatus = HEZHAZHONG; else p->LastStatus = FENZHAZHONG; if(p->ThisStatus != p->LastStatus) p->count++; else p->count = 0; if(p->count >= Key_WipeShakeCount) { p->count = 0; p->ThisStatus = p->LastStatus; p->StatusFlg = SET; if(p->ThisStatus == HEZHAZHONG) { BSET(*key_reg, bit); } else { BCLR(*key_reg, bit); } } else { p->StatusFlg = RESET; BCLR(*key_reg, bit); } } 分析这段代码

这段代码是一个函数,名为`Calculate_Key`,接受一些参数来计算按键状态。让我们逐行分析代码。 ```c void Calculate_Key(KeyDef *p, uint16_t *key_reg, uint8_t bit, GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin) { if(HAL_GPIO_ReadPin(GPIOx,GPIO_Pin) == 0) p->LastStatus = HEZHAZHONG; else p->LastStatus = FENZHAZHONG; } ``` 首先,函数通过读取指定GPIO引脚的状态来确定按键的当前状态。如果读取到的状态为低电平(0),则将`p->LastStatus`设置为`HEZHAZHONG`;否则,将其设置为`FENZHAZHONG`。 ```c if(p->ThisStatus != p->LastStatus) p->count++; else p->count = 0; ``` 接下来,函数检查当前状态和上一个状态是否不同。如果不同,则将计数器`p->count`加1,否则将其重置为0。 ```c if(p->count >= Key_WipeShakeCount) { p->count = 0; p->ThisStatus = p->LastStatus; p->StatusFlg = SET; if(p->ThisStatus == HEZHAZHONG) { BSET(*key_reg, bit); } else { BCLR(*key_reg, bit); } } else { p->StatusFlg = RESET; BCLR(*key_reg, bit); } ``` 然后,函数检查计数器`p->count`是否大于等于预设的消抖计数`Key_WipeShakeCount`。如果是,则说明按键状态已稳定,重置计数器并更新当前状态`p->ThisStatus`为最新状态`p->LastStatus`,同时将状态标志`p->StatusFlg`设置为SET。 接下来,根据当前状态设置指定寄存器`*key_reg`的指定位`bit`。如果当前状态为`HEZHAZHONG`,则将该位设置为1(BSET);否则,将该位清零(BCLR)。 如果计数器未达到消抖计数,则将状态标志`p->StatusFlg`重置为RESET,并将指定寄存器`*key_reg`的指定位`bit`清零(BCLR)。 以上就是这段代码的分析。它通过检测按键的状态,并使用一定的消抖机制来更新按键的最终状态和相关寄存器的值。

相关推荐

优化这段代码void Motor_GB_Position(Motor_HandleTypeDef *H_AXISx) { double t=0; int Distance=0; Distance=(int)((H_AXISx->GBAngle - H_AXISx->REL_GB_Angle)/H_AXISx->GB_MAX*H_AXISx->CP_CountMAX); // if(Distance >= ((int)H_AXISx->CP_CountMAX/2)) // Distance=Distance-(int)H_AXISx->CP_CountMAX; // else if(Distance<= ((int)H_AXISx->CP_CountMAX / -2)) // Distance=(int)H_AXISx->CP_CountMAX+Distance; if(H_AXISx->GBDWFLAG==1) { t=(double)H_AXISx->Newspeed/(double)H_AXISx->Accspeed; H_AXISx->DecCount=(uint32_t)(t*t*(double)H_AXISx->Accspeed/2); if(Distance>5) Motor_Run(H_AXISx->Number , CW); else if(Distance<-5) Motor_Run(H_AXISx->Number , CCW); else { H_AXISx->GBDWFLAG=0; return; } if(H_AXISx->DecCount>abs(Distance/2)) { H_AXISx->DecCount=abs(Distance/2); } H_AXISx->againflag=0; H_AXISx->againcount=0; H_AXISx->GBDWFLAG=2; } else if(H_AXISx->GBDWFLAG==2) { if(abs(Distance)<=H_AXISx->DecCount) { H_AXISx->Newspeed=H_AXISx->MINSpeed; H_AXISx->Accspeed+=H_AXISx->Accspeed/10; Motor_Speed_Calculate(H_AXISx); H_AXISx->GBDWFLAG=3; } } else if(H_AXISx->GBDWFLAG==3) { if((abs(Distance)<=H_AXISx->JINGDU)&&(H_AXISx->againcount>=2)) { H_AXISx->againflag=0; H_AXISx->againcount=0; Motor_Run(H_AXISx->Number,STOP); H_AXISx->Nowspeed=0; H_AXISx->GBDWFLAG=0; } else if((Distance>H_AXISx->JINGDU)&&((H_AXISx->againflag==0)||(H_AXISx->againflag==1)))//&&(H_AXISx->Nowspeed<=H_AXISx->MINSpeed)) { H_AXISx->againflag=2; H_AXISx->againcount++; H_AXISx->Newspeed=H_AXISx->MINSpeed; // Motor_Speed_Calculate(H_AXISx); Motor_Run(H_AXISx->Number,CW); } else if((Distance<-(H_AXISx->JINGDU))&&((H_AXISx->againflag==0)||(H_AXISx->againflag==2)))//&&(H_AXISx->Nowspeed<=H_AXISx->MINSpeed)) { H_AXISx->againflag=1; H_AXISx->againcount++; H_AXISx->Newspeed=H_AXISx->MINSpeed; // Motor_Speed_Calculate(H_AXISx); Motor_Run(H_AXISx->Number,CCW); } } }

优化代码void QQuickPrint::CalcCleanSprayInk(int nCleanSprayTime, int nCleanSprayStartTime, int nCleanSprayEndTime) { if (nCleanSprayTime <= 0) return; _CLEANSPRAY_INKINFO *stuCleanSprayInkInfo = new _CLEANSPRAY_INKINFO; stuCleanSprayInkInfo->nCostTime = nCleanSprayTime; stuCleanSprayInkInfo->nStartTime = static_cast<uint>(nCleanSprayStartTime); stuCleanSprayInkInfo->nEndTime = static_cast<uint>(nCleanSprayEndTime); stuCleanSprayInkInfo->nType = CLEANSPRAY_INK_CALCULATE; int nCntOfChannel = m_qPrintParam->GetCntOfChannel(); int nFrameSize = m_qPrintParam->GetFrameSize(); //喷头孔数 int nCleanDropSize = m_qPrintParam->GetCleanFireDropSize(); double dDropSizeCost = CLEANSPRAYDROPSIZE[nCleanDropSize];//清喷小点、中点、大点对应的耗墨量 int nCleanFireTimes = m_qPrintParam->GetCleanFireTimes(); int nCleanFireInterval = m_qPrintParam->GetCleanFireInterval(); int nCleanTotalTimes = (nCleanSprayTime / nCleanFireInterval) + 1;//清喷动作执行次数 = (清喷时间 / 清喷间隔) + 1,+1的原因是开启清喷时会立即执行1次清喷动作 //单通道清喷动作耗墨量 = 喷头孔数 * 清喷大小 * 单次清喷动作的清喷次数 * 清喷动作执行次数 double dColorCost = PL2ML(nFrameSize * dDropSizeCost * nCleanFireTimes * nCleanTotalTimes); memset(stuCleanSprayInkInfo->dInkCost, 0.00, sizeof(double) * MAXCOLORS); //获取各通道对应的颜色,计算各通道清喷耗墨量 for (int iC = 0; iC != nCntOfChannel; ++iC) { int nColorsCnt = m_qPrintParam->GetCntOfColors(); int nColorIndex = m_qPrintParam->GetRIPDataOfPiece(iC); if (PRN_CMYKOrRBLk == nColorsCnt) //8色模式,通道依次接RIP图的第7 6 1 3 0 2 5 4个位置 { //判断清喷通道接的RIP图位置对应哪个颜色 for (int nIndex = 0; nIndex != PRN_CMYKOrRBLk; ++nIndex) { if (g_nColorIndexOfCMYKOrRBLk[nIndex] == nColorIndex) { stuCleanSprayInkInfo->dInkCost[nIndex] += dColorCost; } } } else //其它颜色模式 { stuCleanSprayInkInfo->dInkCost[nColorIndex] += dColorCost; } } //清喷信息上报到MES stuCleanSprayInfo *pCleanSprayInfo = new stuCleanSprayInfo; pCleanSprayInfo->nRunTime = nCleanSprayTime; pCleanSprayInfo->strStartTime = QDateTime::fromTime_t(stuCleanSprayInkInfo->nStartTime).toString("yyyy-MM-dd hh:mm:ss"); pCleanSprayInfo->strEndTime = QDateTime::fromTime_t(stuCleanSprayInkInfo->nEndTime).toString("yyyy-MM-dd hh:mm:ss"); memcpy((char*)pCleanSprayInfo->dInkCost, (char*)stuCleanSprayInkInfo->dInkCost, sizeof(double) * MAXCOLORS); emit(signal_SendMes(MES_MSG_CLEANSPRAY, pCleanSprayInfo)); emit(signal_AddInkInfo(CLEANSPRAY_INK_CALCULATE, stuCleanSprayInkInfo)); }

重写下面代码;timer_handle_t itcs_timer_init(timer_handle_t handle, timer_event_cb_t cb_event) { timer_priv_t *timer_priv = handle; if (timer_priv->idx < 0 || timer_priv->idx >= CONFIG_TIMER_NUM) { return NULL; } set_clock_type("cpu-pclk"); // printf("enter timer init fun in driver\n"); uint32_t tempreg = 0; switch (timer_priv->idx) { case 0: timer_priv->base = ITCS_TIMER0_BASE; break; case 1: timer_priv->base = ITCS_TIMER1_BASE; break; default: break; } // printf("unit %d ,timeridx %d, base addr // %08x\n",timer_priv->idx,timer_priv->timeridx,timer_priv->base); switch (timer_priv->timeridx) { case 1: tempreg = readl(timer_priv->base + TIMER_CCR_CONTROL_C1); tempreg |= CCR_RST_ENABLE; writel(tempreg, timer_priv->base + TIMER_CCR_CONTROL_C1); tempreg = readl(timer_priv->base + TIMER_IER_C1); tempreg &= ~(IER_EVNT_ENABLE | IER_ITRV_ENABLE | IER_M1_ENABLE | IER_M2_ENABLE | IER_M3_ENABLE); writel(tempreg, timer_priv->base + TIMER_IER_C1); if (timer_priv->idx == 0) { timer_priv->irq = TTC0_TIMER1_IRQn; request_irq(TTC0_TIMER1_IRQn, itcs_timer_irq, "itcs_timer_irq01", timer_priv); } else { timer_priv->irq = TTC1_TIMER1_IRQn; request_irq(TTC1_TIMER1_IRQn, itcs_timer_irq, "itcs_timer_irq11", timer_priv); } break; case 2: tempreg = readl(timer_priv->base + TIMER_CCR_CONTROL_C2); tempreg |= CCR_RST_ENABLE; writel(tempreg, timer_priv->base + TIMER_CCR_CONTROL_C2); tempreg = readl(timer_priv->base + TIMER_IER_C2); tempreg &= ~(IER_EVNT_ENABLE | IER_ITRV_ENABLE | IER_M1_ENABLE | IER_M2_ENABLE | IER_M3_ENABLE); writel(tempreg, timer_priv->base + TIMER_IER_C2); if (timer_priv->idx == 0) { timer_priv->irq = TTC0_TIMER2_IRQn; request_irq(TTC0_TIMER2_IRQn, itcs_timer_irq, "itcs_timer_irq02", timer_priv); } else { timer_priv->irq = TTC1_TIMER2_IRQn; request_irq(TTC1_TIMER2_IRQn, itcs_timer_irq, "itcs_timer_irq12", timer_priv); } break; case 3: tempreg = readl(timer_priv->base + TIMER_CCR_CONTROL_C3); tempreg |= CCR_RST_ENABLE; writel(tempreg, timer_priv->base + TIMER_CCR_CONTROL_C3); tempreg = readl(timer_priv->base + TIMER_IER_C3); tempreg &= ~(IER_EVNT_ENABLE | IER_ITRV_ENABLE | IER_M1_ENABLE | IER_M2_ENABLE | IER_M3_ENABLE); writel(tempreg, timer_priv->base + TIMER_IER_C3); if (timer_priv->idx == 0) { timer_priv->irq = TTC0_TIMER3_IRQn; request_irq(TTC0_TIMER3_IRQn, itcs_timer_irq, "itcs_timer_irq03", timer_priv); // printf("unit timer1 ret=%08x , request irq3 success!\n",ret); } else { timer_priv->irq = TTC1_TIMER3_IRQn; request_irq(TTC1_TIMER3_IRQn, itcs_timer_irq, "itcs_timer_irq13", timer_priv); // printf("unit timer1 ret=%08x , request irq3 success!\n",ret); } break; default: return NULL; } timer_priv->cb_event = cb_event; // printf("init status irq id num:%d\n",timer_priv->irq); // printf("INIT TIMER %d Timer Count No %d SUCCESS\n", timer_priv->idx, // timer_priv->timeridx); return (timer_handle_t)timer_priv; }

#include <stdio.h>#include <stdlib.h>// 定义二叉树结点typedef struct TreeNode { char data; // 存储运算符或运算数 struct TreeNode *left; // 左子树指针 struct TreeNode *right; // 右子树指针} TreeNode, *PtrToNode;// 创建二叉树(递归实现)PtrToNode createBinaryTree() { char c; scanf("%c", &c); if (c == ' ') { // 如果是空格,返回 NULL return NULL; } // 分配结点空间,并存储数据 PtrToNode node = (PtrToNode) malloc(sizeof(TreeNode)); node->data = c; // 递归创建左右子树 node->left = createBinaryTree(); node->right = createBinaryTree(); return node;}// 计算二叉树中表达式的值(递归实现)int calculate(PtrToNode root) { if (root->left == NULL && root->right == NULL) { // 如果是叶子结点(即运算数),返回该数值 return root->data - '0'; // 将字符转成数字 } // 递归计算左右子树的值,并根据运算符计算父结点的值 int left = calculate(root->left); int right = calculate(root->right); switch (root->data) { case '+': return left + right; case '-': return left - right; case '*': return left * right; case '/': return left / right; default: return 0; }}int main() { printf("请输入表达式,以回车结束:\n"); PtrToNode root = createBinaryTree(); // 创建表达式二叉树 printf("该表达式的计算结果为:%d\n", calculate(root)); // 计算表达式的值 return 0;}这个代码有没有错误,如果有请改正,如果没有,请展示命令界面,并回答正确答案

最新推荐

recommend-type

rockyou.txt

rockyou
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB结构体与对象编程:构建面向对象的应用程序,提升代码可维护性和可扩展性

![MATLAB结构体与对象编程:构建面向对象的应用程序,提升代码可维护性和可扩展性](https://picx.zhimg.com/80/v2-8132d9acfebe1c248865e24dc5445720_1440w.webp?source=1def8aca) # 1. MATLAB结构体基础** MATLAB结构体是一种数据结构,用于存储和组织相关数据。它由一系列域组成,每个域都有一个名称和一个值。结构体提供了对数据的灵活访问和管理,使其成为组织和处理复杂数据集的理想选择。 MATLAB中创建结构体非常简单,使用struct函数即可。例如: ```matlab myStruct
recommend-type

详细描述一下STM32F103C8T6怎么与DHT11连接

STM32F103C8T6可以通过单总线协议与DHT11连接。连接步骤如下: 1. 将DHT11的VCC引脚连接到STM32F103C8T6的5V电源引脚; 2. 将DHT11的GND引脚连接到STM32F103C8T6的GND引脚; 3. 将DHT11的DATA引脚连接到STM32F103C8T6的GPIO引脚,可以选择任一GPIO引脚,需要在程序中配置; 4. 在程序中初始化GPIO引脚,将其设为输出模式,并输出高电平,持续至少18ms,以激活DHT11; 5. 将GPIO引脚设为输入模式,等待DHT11响应,DHT11会先输出一个80us的低电平,然后输出一个80us的高电平,
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB结构体与数据库交互:无缝连接数据存储与处理,实现数据管理自动化

![MATLAB结构体与数据库交互:无缝连接数据存储与处理,实现数据管理自动化](https://ww2.mathworks.cn/products/database/_jcr_content/mainParsys/band_1749659463_copy/mainParsys/columns_copy/6d5289a2-72ce-42a8-a475-d130cbebee2e/image_copy_2009912310.adapt.full.medium.jpg/1709291769739.jpg) # 1. MATLAB结构体与数据库交互概述** MATLAB结构体与数据库交互是一种强大的
recommend-type

Link your Unity

project to C# script in Visual Studio. Can you provide me with some guidance on this? Yes, I can definitely help you with that! To link your Unity project to C# script in Visual Studio, you first need to make sure that you have both Unity and Visual Studio installed on your computer. Then, you can
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。