swin transformer block代码
时间: 2023-10-13 10:06:42 浏览: 139
transformer代码
5星 · 资源好评率100%
以下是一个简单的Swin Transformer块的代码示例:
```
import torch.nn as nn
from einops.layers.torch import Rearrange
class SwinTransformerBlock(nn.Module):
def __init__(self, embed_dim, num_heads, feedforward_dim, dropout_rate):
super().__init__()
self.norm1 = nn.LayerNorm(embed_dim)
self.self_attention = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout_rate)
self.dropout1 = nn.Dropout(dropout_rate)
self.norm2 = nn.LayerNorm(embed_dim)
self.feedforward = nn.Sequential(
nn.Linear(embed_dim, feedforward_dim),
nn.ReLU(),
nn.Linear(feedforward_dim, embed_dim),
)
self.dropout2 = nn.Dropout(dropout_rate)
def forward(self, x):
residual = x
x = self.norm1(x)
x = self.self_attention(x, x, x)[0]
x = self.dropout1(x)
x += residual
residual = x
x = self.norm2(x)
x = self.feedforward(x)
x = self.dropout2(x)
x += residual
return x
```
这个Swin Transformer块包括一个多头自注意力层、一个Feedforward层和一个LayerNorm层。在这个块中,输入张量经过LayerNorm层进行归一化,然后通过自注意力层进行加权平均处理。注意力输出张量通过Dropout层进行随机失活,然后与输入张量进行残差连接并再次通过LayerNorm层进行归一化。然后,这个张量再经过一个Feedforward层进行非线性变换,输出再次通过Dropout层进行随机失活,然后与先前的残差连接进行最终的输出。
阅读全文