transformers代码实现
时间: 2023-07-25 10:32:17 浏览: 148
Transformers是一种基于自注意力机制的神经网络模型,在自然语言处理领域有很多应用。以下是使用Pytorch实现Transformers模型的代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, n_heads):
super().__init__()
self.d_model = d_model
self.n_heads = n_heads
self.d_head = d_model // n_heads
self.q_linear = nn.Linear(d_model, d_model)
self.v_linear = nn.Linear(d_model, d_model)
self.k_linear = nn.Linear(d_model, d_model)
self.out_linear = nn.Linear(d_model, d_model)
def forward(self, q, k, v, mask=None):
bs = q.size(0)
# perform linear operation and split into n_heads
k = self.k_linear(k).view(bs, -1, self.n_heads, self.d_head)
q = self.q_linear(q).view(bs, -1, self.n_heads, self.d_head)
v = self.v_linear(v).view(bs, -1, self.n_heads, self.d_head)
# transpose to get dimensions bs * n_heads * sl * d_model
k = k.transpose(1,2)
q = q.transpose(1,2)
v = v.transpose(1,2)
# calculate attention using function we will define next
scores = self.attention(q, k, v, self.d_head, mask, self.dropout)
# concatenate heads and put through final linear layer
concat = scores.transpose(1,2).contiguous().view(bs, -1, self.d_model)
output = self.out_linear(concat)
return output
def attention(self, q, k, v, d_head, mask=None, dropout=None):
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_head)
if mask is not None:
mask = mask.unsqueeze(1)
scores = scores.masked_fill(mask == 0, -1e9)
scores = F.softmax(scores, dim=-1)
if dropout is not None:
scores = dropout(scores)
output = torch.matmul(scores, v)
return output
class PositionwiseFeedForward(nn.Module):
def __init__(self, d_model, d_ff):
super().__init__()
self.linear_1 = nn.Linear(d_model, d_ff)
self.linear_2 = nn.Linear(d_ff, d_model)
def forward(self, x):
x = self.linear_1(x)
x = F.relu(x)
x = self.linear_2(x)
return x
class EncoderLayer(nn.Module):
def __init__(self, d_model, n_heads, d_ff, dropout):
super().__init__()
self.self_attn = MultiHeadAttention(d_model, n_heads)
self.pwff = PositionwiseFeedForward(d_model, d_ff)
self.norm_1 = nn.LayerNorm(d_model)
self.norm_2 = nn.LayerNorm(d_model)
self.dropout_1 = nn.Dropout(dropout)
self.dropout_2 = nn.Dropout(dropout)
def forward(self, x, mask=None):
x_norm = self.norm_1(x)
x_attn = self.self_attn(x_norm, x_norm, x_norm, mask)
x_res = x + self.dropout_1(x_attn)
x_norm = self.norm_2(x_res)
x_ff = self.pwff(x_norm)
x_res = x_res + self.dropout_2(x_ff)
return x_res
class Encoder(nn.Module):
def __init__(self, d_model, n_heads, d_ff, dropout, n_layers):
super().__init__()
self.layers = nn.ModuleList([EncoderLayer(d_model, n_heads, d_ff, dropout) for _ in range(n_layers)])
self.norm = nn.LayerNorm(d_model)
def forward(self, x, mask=None):
for layer in self.layers:
x = layer(x, mask)
return self.norm(x)
class Transformer(nn.Module):
def __init__(self, d_model, n_heads, d_ff, dropout, n_layers):
super().__init__()
self.encoder = Encoder(d_model, n_heads, d_ff, dropout, n_layers)
def forward(self, x, mask=None):
x = self.encoder(x, mask)
return x
```
这里实现了Transformer的核心组件:多头自注意力机制(MultiHeadAttention)、前馈网络(PositionwiseFeedForward)、编码器层(EncoderLayer)、编码器(Encoder)和Transformer模型(Transformer)。可以通过调用Transformer的forward方法来运行模型。
阅读全文