上述代码报错name 'struct' is not defined怎么修改?
时间: 2023-09-14 10:07:22 浏览: 218
出现这个错误的原因可能是没有正确导入 Python 中的 struct 模块。可以在代码中加入以下这句导入语句,解决该问题:
```python
import struct
```
如果已经导入但还是出现该错误,可能是因为在代码中使用了 struct 作为变量名或函数名等,建议修改该变量名或函数名。
相关问题
报错name 'DoubleType is not defined
这个错误通常是由于使用了过时的数据类型或未导入必要的库而导致的。在Python 3中,DoubleType已被删除,因此您需要使用float类型。如果您正在使用pyspark,则需要导入pyspark.sql.types库并使用FloatType()函数。以下是两个解决方法:
1.使用float类型代替DoubleType:
```python
x = 1.5 # 使用float类型
```
2.在pyspark中使用FloatType()函数:
```python
from pyspark.sql.types import FloatType
schema = StructType([StructField("column_name", FloatType(), True)])
```
48行报错:发生异常: NameError name 'perform_tsa_transform' is not defined File "/Users/dingfengyan/工作/项目开发/哈理工/批量导出功能/feature.py", line 48, in process_csv_files perform_tsa_transform(file_path, tsa_window_size) ^^^^^^^^^^^^^^^^^^^^^ File "/Users/dingfengyan/工作/项目开发/哈理工/批量导出功能/feature.py", line 52, in <module> process_csv_files(currentPath, 1000) NameError: name 'perform_tsa_transform' is not defined
抱歉,我之前的回答中有一个错误。在代码中,我错误地将 `perform_tsa_transform` 函数放在了 `extract_and_convert_zip_files` 函数内部的代码块中,导致无法在 `process_csv_files` 函数中调用该函数。
以下是修改后的代码,已修复此问题:
```python
import os
import csv
import struct
import zipfile
def extract_and_convert_zip_files(folder_path, output_folder):
for root, dirs, files in os.walk(folder_path):
for file in files:
if file.endswith(".zip"):
file_path = os.path.join(root, file)
extract_zip_files(file_path, output_folder)
def extract_zip_files(file_path, output_folder):
with zipfile.ZipFile(file_path, "r") as zip_file:
for file_info in zip_file.infolist():
if file_info.filename.endswith(".bin"):
bin_data = zip_file.read(file_info.filename)
output_file_name = os.path.splitext(file_info.filename)[0] + "_original.csv"
output_file_path = os.path.join(output_folder, output_file_name)
convert_binary_to_csv(bin_data, output_file_path)
perform_tsa_transform(output_file_path)
def convert_binary_to_csv(bin_data, output_file_path):
with open(output_file_path, "w", newline="") as csv_file:
csv_writer = csv.writer(csv_file)
csv_writer.writerow(["Column 1", "Column 2", "Column 3"])
pos = 0
while pos < len(bin_data):
binary_data = bin_data[pos:pos+8]
pos += 8
float_data = struct.unpack("fff", binary_data)
csv_writer.writerow(float_data)
def perform_tsa_transform(input_csv_file):
window_size = 3 # 设置TSA的窗口大小
output_csv_file = input_csv_file.replace("_original.csv", "_tsa.csv")
with open(input_csv_file, "r") as input_file, open(output_csv_file, "w", newline="") as output_file:
csv_reader = csv.reader(input_file)
csv_writer = csv.writer(output_file)
csv_writer.writerow(["Column 1", "Column 2", "Column 3"])
data_columns = [1, 2, 3] # 指定需要进行TSA处理的列
data = [[] for _ in data_columns]
for row in csv_reader:
for i, col in enumerate(data_columns):
data[i].append(float(row[col]))
if len(data[0]) == window_size:
transformed_data = perform_tsa_transform_window(data)
csv_writer.writerow(transformed_data)
for i in range(len(data)):
data[i].pop(0)
def perform_tsa_transform_window(data):
transformed_data = []
for i in range(len(data[0])):
window_data = [data[j][i] for j in range(len(data))]
transformed_data.append(sum(window_data) / len(window_data))
return transformed_data
# 指定文件夹路径和输出文件夹路径进行调用
extract_and_convert_zip_files("your_folder_path", "your_output_folder_path")
```
请确保 `perform_tsa_transform` 函数位于 `extract_and_convert_zip_files` 函数之外,并在 `process_csv_files` 函数中调用 `perform_tsa_transform` 函数。
如果您仍然遇到问题,请检查代码中是否存在其他错误,并确保所有函数都在正确的位置定义和调用。
阅读全文
相关推荐










