import os import pandas as pd from sklearn.neighbors import KNeighborsRegressor # 读取第一个文件夹中的所有csv文件 folder1_path = "/path/to/folder1" files1 = os.listdir(folder1_path) dfs1 = [] for file1 in files1: if file1.endswith(".csv"): file1_path = os.path.join(folder1_path, file1) df1 = pd.read_csv(file1_path, usecols=[1,2,3,4]) dfs1.append(df1) # 将第一个文件夹中的所有数据合并为一个DataFrame df_X = pd.concat(dfs1, ignore_index=True) # 读取第二个文件夹中的所有csv文件 folder2_path = "/path/to/folder2" files2 = os.listdir(folder2_path) dfs2 = [] for file2 in files2: if file2.endswith(".csv"): file2_path = os.path.join(folder2_path, file2) df2 = pd.read_csv(file2_path, usecols=[1]) dfs2.append(df2) # 将第二个文件夹中的所有数据合并为一个DataFrame df_X["X5"] = pd.concat(dfs2, ignore_index=True) # 读取第三个文件夹中的所有csv文件 folder3_path = "/path/to/folder3" files3 = os.listdir(folder3_path) dfs3 = [] for file3 in files3: if file3.endswith(".csv"): file3_path = os.path.join(folder3_path, file3) df3 = pd.read_csv(file3_path, usecols=[2,6]) dfs3.append(df3) # 将第三个文件夹中的所有数据合并为一个DataFrame df_y = pd.concat(dfs3, ignore_index=True) # 训练k邻近回归模型 k = 5 model = KNeighborsRegressor(n_neighbors=k) model.fit(df_X, df_y) 这段代码之后的步骤是什么
时间: 2024-04-01 22:38:35 浏览: 206
利用Pandas读取文件路径或文件名称包含中文的csv文件方法
这段代码训练了一个k邻近回归模型,之后可以使用该模型对新的数据进行预测。预测的步骤如下:
1. 读取新的数据文件夹中的所有csv文件,并将它们合并为一个DataFrame,使用与训练数据相同的列;
2. 对新的数据应用与训练数据相同的特征工程,包括处理缺失值、特征缩放等;
3. 使用训练好的k邻近回归模型对新的数据进行预测,得到预测结果;
4. 对预测结果进行后处理,例如对结果进行反向变换等;
5. 输出预测结果,可以将预测结果保存到文件或者通过其他方式展示给用户。
阅读全文