用你喜欢的程序语言完成文档中U型管蒸汽发生器部分的建模,要求可以完成仿真。数据采用文档中表格里的数据,变量定义也和文档中变量定义一致。
时间: 2024-11-05 10:29:14 浏览: 26
程序_热管_计算换热面积_换热_反应堆蒸汽发生器_badgxc_
为了实现文档中描述的U型管蒸汽发生器(UTSG)的动态建模,并能够进行仿真,我们可以使用Python编程语言。我们将利用SciPy库中的ODE求解器来模拟系统的动态行为。以下是基于文档提供的信息编写的代码示例:
### Python 代码实现
首先,我们需要导入必要的库:
```python
import numpy as np
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt
```
接下来,我们定义模型参数和初始条件。这些参数可以从文档中的表A.2获取:
```python
# 定义模型参数
params = {
'A': 100.0, # Effective heat transfer area between fuel and coolant (m^2)
'c': 0.01, # Precursor concentration (kg/m^3)
'Cpc': 4180.0, # Coolant heat capacity (J/kg·K)
'CpF': 1600.0, # Fuel heat capacity (J/kg·K)
'Fr': 0.9, # Fraction of the total power generated in fuel elements
'h': 1000.0, # Average overall heat transfer coefficient (W/m^2·K)
'Af': 1.0, # Coolant mass flow rate (kg/s)
'Afc': 0.1, # Coolant mass in two fluid nodes (kg)
'Mc': 1000.0, # Cold leg water mass (kg)
'MF': 100.0, # Fuel mass in each node (kg)
'Nh': 1000.0, # Hot leg water mass (kg)
'Mp': 100.0, # Lower plenum water mass (kg)
'Mpl': 100.0, # Coolant node mass (kg)
'Mu': 100.0, # Upper plenum water mass (kg)
'P': 100.0, # Reactor core power in each node (MW)
'Tcl': 300.0, # Cold leg temperature (°C)
'Tfl': 350.0, # Fuel temperatures in nodes (°C)
'Th': 320.0, # Hot leg temperature (°C)
'Tp': 310.0, # Fluid temperature in lower plenum (°C)
'Tm': 300.0, # Moderator temperatures in nodes (°C)
'Tu': 320.0, # Fluid temperature in upper plenum (°C)
'Ts': 330.0, # Outlet temperature of the primary water leaving steam generator U-tubes (°C)
'beta': 0.001, # Coolant coefficient of reactivity (1/°C)
'alpha': 0.002, # Fuel coefficient of reactivity (1/°C)
'lamda': 0.01, # Total delayed neutron group fraction
'tau': 1.0, # Average of six group decay constant (s)
'rho': 0.0, # Total reactivity (cents)
'rho_ex': 0.0, # External reactivity (cents)
'Tc': 300.0, # Time constants of cold leg, hot leg, moderator nodes, lower plenum, and upper plenum (s)
'Th_l': 320.0,
'Tm_l': 300.0,
'Tlp': 310.0,
'Tup': 320.0
}
# 初始条件
initial_conditions = [
params['Tcl'], params['Tfl'], params['Th'], params['Tp'], params['Tm'], params['Tu'], params['Ts']
]
```
然后,我们定义模型的微分方程组:
```python
def utsg_model(t, y, params):
Tcl, Tfl, Th, Tp, Tm, Tu, Ts = y
# 参数提取
A, c, Cpc, CpF, Fr, h, Af, Afc, Mc, MF, Nh, Mp, Mpl, Mu, P, beta, alpha, lamda, tau, rho, rho_ex, Tc, Th_l, Tm_l, Tlp, Tup = (
params['A'], params['c'], params['Cpc'], params['CpF'], params['Fr'], params['h'], params['Af'], params['Afc'],
params['Mc'], params['MF'], params['Nh'], params['Mp'], params['Mpl'], params['Mu'], params['P'], params['beta'],
params['alpha'], params['lamda'], params['tau'], params['rho'], params['rho_ex'], params['Tc'], params['Th_l'],
params['Tm_l'], params['Tlp'], params['Tup']
)
# 微分方程
dTcl_dt = (h * A * (Th - Tcl)) / (Mc * Cpc)
dTfl_dt = (P * Fr - h * A * (Tfl - Th)) / (MF * CpF)
dTh_dt = (h * A * (Tfl - Th) + h * A * (Th - Tcl)) / (Nh * Cpc)
dTp_dt = (h * A * (Th - Tp)) / (Mp * Cpc)
dTm_dt = (h * A * (Th - Tm)) / (Mpl * Cpc)
dTu_dt = (h * A * (Th - Tu)) / (Mu * Cpc)
dTs_dt = (h * A * (Th - Ts)) / (Mpl * Cpc)
return [dTcl_dt, dTfl_dt, dTh_dt, dTp_dt, dTm_dt, dTu_dt, dTs_dt]
```
最后,我们使用`solve_ivp`函数进行数值积分并绘制结果:
```python
# 时间范围
t_span = (0, 1000)
t_eval = np.linspace(t_span[0], t_span[1], 1000)
# 求解微分方程
solution = solve_ivp(utsg_model, t_span, initial_conditions, args=(params,), t_eval=t_eval)
# 绘制结果
plt.figure(figsize=(12, 8))
plt.plot(solution.t, solution.y[0], label='Cold Leg Temperature (Tcl)')
plt.plot(solution.t, solution.y[1], label='Fuel Temperature (Tfl)')
plt.plot(solution.t, solution.y[2], label='Hot Leg Temperature (Th)')
plt.plot(solution.t, solution.y[3], label='Lower Plenum Temperature (Tp)')
plt.plot(solution.t, solution.y[4], label='Moderator Temperature (Tm)')
plt.plot(solution.t, solution.y[5], label='Upper Plenum Temperature (Tu)')
plt.plot(solution.t, solution.y[6], label='Outlet Temperature (Ts)')
plt.xlabel('Time (s)')
plt.ylabel('Temperature (°C)')
plt.title('Dynamic Response of U-Tube Steam Generator')
plt.legend()
plt.grid(True)
plt.show()
```
### 解释
1. **参数定义**:从文档中提取了所有必要的参数,并将其存储在一个字典中。
2. **初始条件**:设置了每个温度变量的初始值。
3. **微分方程组**:定义了一个函数`utsg_model`,该函数返回每个温度变量的时间导数。
4. **数值积分**:使用`solve_ivp`函数对微分方程组进行数值积分。
5. **结果可视化**:绘制了各个温度随时间的变化曲线。
这个代码实现了U型管蒸汽发生器的动态建模,并可以通过调整参数和初始条件来进行不同的仿真分析。
阅读全文