#include"LedControl.h" LedControl lc=LedControl(11,9,10,1); byte d[8]{ B10000001, B01000010, B00100100, B00011000, B00011000, B00011000, B00011000, B00011000, }; byte a[8]{ B10000001, B11000001, B10100001, B10010001, B10001001, B10000101, B10000011, B10000001, }; String rkey="wq01"; String key; int led=8; int l=0; void setup() { // put your setup code here, to run once: digitalWrite(led,LOW); SerialUSB.begin(9600); pinMode(led,OUTPUT); lc.shutdown(0,false); lc.setIntensity(0,3); lc.clearDisplay(0); while(SerialUSB.read()>=0) {} } void loop() { // put your main code here, to run repeatedly: int i,j,k,c; if(SerialUSB.available()>0) { key=SerialUSB.readString(); if(key.compareTo(rkey)==0) { SerialUSB.println("This is right"); digitalWrite(led,HIGH); delay(2500); for (j=0;j<8;j++) lc.setRow(0,j,d[j]); } else { SerialUSB.println("This is false"); digitalWrite(led,HIGH); delay(500); digitalWrite(led,LOW); delay(500); l++; } if(l==3) { for (k=0;k<8;k++) lc.setRow(0,k,a[k]); do{ digitalWrite(led,HIGH); delay(500); digitalWrite(led,LOW); delay(500); }while(1); } } delay(1000); digitalWrite(led,LOW); lc.clearDisplay(0); } 输入正确的密码也会判断为错误

时间: 2024-01-14 18:04:26 浏览: 22
代码中读取串口数据的方式是使用 `SerialUSB.readString()`,这会读取整个串口缓冲区中的数据并返回一个字符串。但是,读取字符串时也会读取到换行符 `\n` 或者回车符 `\r`,这可能会导致密码判断出现问题。 建议在读取密码时,使用 `SerialUSB.read()` 逐个读取串口数据,并判断每个字符是否与密码字符串中的对应位置相等。同时,在比较密码字符串时,可以使用 `strcmp()` 函数来进行比较,该函数可以忽略字符串中的空格、换行符等字符,只比较实际的字符串内容。 另外,可以增加一些调试信息来帮助排查问题,比如在读取密码时,可以使用 `SerialUSB.write()` 函数将读取到的字符输出到串口,以便查看实际读取到的数据。
相关问题

int A = 12; int B = 11; int C= 10; int D = 9; int E = 8; int time=10000; int switch1=6; int switch2=5; LedControl lc=LedControl(12,11,13,1); byte N0[8]={0x00,0x3C,0x24,0x24,0x24,0x24,0x3C,0x00}, N1[8]

这段代码定义了一些变量和数组,并初始化了一个LedControl对象。具体解释如下: - int A = 12; int B = 11; int C=10; int D = 9; int E = 8;:定义了5个整型变量A、B、C、D、E,分别初始化为12、11、10、9、8。 - int time=10000; int switch1=6; int switch2=5;:定义了2个整型变量time、switch1、switch2,分别初始化为10000、6、5。 - LedControl lc=LedControl(12,11,13,1);:定义了一个LedControl对象lc,并初始化为(12,11,13,1)。这里的(12,11,13,1)是LedControl类的构造函数的参数,分别为DIN、CLK、CS和控制的模块数量。 - byte N0[8]={0x00,0x3C,0x24,0x24,0x24,0x24,0x3C,0x00}, N1[8]:定义了两个长度为8的字节数组N0、N1,并初始化为{0x00,0x3C,0x24,0x24,0x24,0x24,0x3C,0x00}和一个未初始化的数组N1。这里的0x00、0x3C、0x24是16进制数,表示二进制数00000000、00111100、00100100。

8x8led点阵屏心形动态显示代码

以下是一个使用Arduino控制8x8 LED点阵屏心形动态显示的代码示例: ``` #include <LedControl.h> LedControl lc = LedControl(12, 11, 10, 1); byte heart = { B00000000, B01100110, B11111111, B11111111, B01111110, B00111100, B00011000, B00000000 }; void setup() { lc.shutdown(0, false); lc.setIntensity(0, 8); lc.clearDisplay(0); } void loop() { for (int i = 0; i < 8; i++) { lc.setRow(0, i, heart[i]); delay(50); } for (int i = 7; i >= 0; i--) { lc.setRow(0, i, heart[i]); delay(50); } } ``` 该代码使用LedControl库控制LED点阵屏,将一个心形图案分解为8行,每行一个字节,使用循环将每行逐个显示出来。然后再反向循环将其逐个消失,从而达到动态显示的效果。

相关推荐

帮我更加完善下面程序适合arduino1.5.2运行。#include"LedControl.h" LedControl lc=LedControl(13,11,12,1); byte d[8]={ B00001000, B00000100, B00000010, B11111111, B11111111, B00000010, B00000100, B00001000,}; byte h[8]={ B00010000, B00100000, B01000000, B11111111, B11111111, B01000000, B00100000, B00010000,}; int k1=0; int k2=0; int keypin1=10; int keypin2=3; int redpin = 4; int yellowpin = 5; int greenpin = 6; int redpin2 = 7; int yellowpin2 = 8; int greenpin2 = 9; void setup() { lc.shutdown(0,false); lc.setIntensity(0,3); lc.clearDisplay(0); pinMode(keypin1,INPUT); pinMode(keypin2,INPUT); pinMode(redpin,OUTPUT); pinMode(yellowpin,OUTPUT); pinMode(greenpin,OUTPUT); pinMode(redpin2,OUTPUT); pinMode(yellowpin2,OUTPUT); pinMode(greenpin2,OUTPUT); } void loop() { k2=digitalRead(keypin2); if(k2==LOW) { k1=digitalRead(keypin1); if(k1==LOW) { lc.clearDisplay(0); for(int row=0;row<8;row++) lc.setRow(0,row,h[row]); digitalWrite(redpin,HIGH); digitalWrite(greenpin2,HIGH); delay(7000); digitalWrite(redpin,LOW); digitalWrite(yellowpin,HIGH); delay(500); digitalWrite(yellowpin,LOW); delay(500); digitalWrite(yellowpin,HIGH); delay(500); digitalWrite(yellowpin,LOW); delay(500); digitalWrite(yellowpin,HIGH); delay(500); digitalWrite(yellowpin,LOW); delay(500); lc.clearDisplay(0); for(int row=0;row<8;row++) lc.setRow(0,row,d[row]); digitalWrite(greenpin2,LOW); digitalWrite(greenpin,HIGH); digitalWrite(redpin,LOW); digitalWrite(redpin2,HIGH); digitalWrite(yellowpin,LOW); delay(7000); digitalWrite(redpin2,LOW); digitalWrite(yellowpin2,HIGH); delay(500); digitalWrite(yellowpin2,LOW); delay(500); digitalWrite(yellowpin2,HIGH); delay(500); digitalWrite(yellowpin2,LOW); delay(500); digitalWrite(yellowpin2,HIGH); delay(500); digitalWrite(yellowpin2,LOW); delay(500); digitalWrite(yellowpin2,LOW); digitalWrite(greenpin,LOW); } else if(k1==HIGH) { lc.clearDisplay(0); for(int row=0;row<8;row++) lc.setRow(0,row,h[row]); digitalWrite(redpin,HIGH); digitalWrite(greenpin2,HIGH); delay(15000); digitalWrite(redpin,LOW); digitalWrite(yellowpin,HIGH); delay(500); digitalWrite(yellowpin,LOW); delay(500); digitalWrite(yellowpin,HIGH); delay(500); digitalWrite(yellowpin,LOW); delay(500); digitalWrite(yellowpin,HIGH); delay(500); digitalWrite(yellowpin,LOW); delay(500); lc.clearDisplay(0); for(int row=0;row<8;row++) lc.setRow(0,row,d[row]); digitalWrite(greenpin2,LOW); digitalWrite(greenpin,HIGH); digitalWrite(redpin,LOW); digitalWrite(redpin2,HIGH); digitalWrite(yellowpin,LOW); delay(15000); digitalWrite(redpin2,LOW); digitalWrite(yellowpin2,HIGH); delay(500); digitalWrite(yellowpin2,LOW); delay(500); digitalWrite(yellowpin2,HIGH); delay(500); digitalWrite(yellowpin2,LOW); delay(500); digitalWrite(yellowpin2,HIGH); delay(500); digitalWrite(yellowpin2,LOW); delay(500); digitalWrite(yellowpin2,LOW); digitalWrite(greenpin,LOW); } } else if(k2==HIGH) digitalWrite(redpin,HIGH); digitalWrite(redpin2,HIGH); delay(5000); digitalWrite(redpin,LOW); digitalWrite(redpin2,LOW); }

int A = 12; int B = 11; int C= 10; int D = 9; int E = 8; int time=10000; int switch1=6; int switch2=5; LedControl lc=LedControl(12,11,13,1); byte N0[8]={0x00,0x3C,0x24,0x24,0x24,0x24,0x3C,0x00}, N1[8]={0x00,0x04,0x0C,0x04,0x04,0x04,0x0E,0x00}, N2[8]={0x00,0x0E,0x02,0x0E,0x08,0x08,0x0E,0x00}, N3[8]={0x00,0x0E,0x02,0x0E,0x02,0x02,0x0E,0x00}, N4[8]={0x00,0x0A,0x0A,0x0A,0x0F,0x02,0x02,0x00}, N5[8]={0x00,0x0E,0x08,0x0E,0x02,0x02,0x0E,0x00}, N6[8]={0x00,0x0E,0x08,0x0E,0x0A,0x0A,0x0E,0x00}, N7[8]={0x00,0x0E,0x02,0x02,0x02,0x02,0x02,0x00}, N8[8]={0x00,0x0E,0x0A,0x0E,0x0A,0x0A,0x0E,0x00}, N9[8]={0x00,0x0E,0x0A,0x0E,0x02,0x02,0x0E,0x00}, N10[8]={0x00,0x2E,0x2A,0x2A,0x2A,0x2A,0x2E,0x00}; void setup() { pinMode(A,OUTPUT); pinMode(B,OUTPUT); pinMode(C,OUTPUT); pinMode(D,OUTPUT); pinMode(E,OUTPUT); pinMode(switch1,INPUT); pinMode(switch2,INPUT); lc.shutdown(0,false); //启动时,MAX72XX处于省电模式 lc.setIntensity(0,3); //将亮度设置为最大值 lc.clearDisplay(0); //清除显示 } } void loop() { x(); y(); } void x() { digitalWrite(A,HIGH); digitalWrite(E,HIGH); for(int o=0;o<=time;) { delay(1000); o=o+1000; } digitalWrite(A,LOW); digitalWrite(E,LOW); for(int i=0;i<3;i++) { delay(500); digitalWrite(C, HIGH); delay(500); digitalWrite(C, LOW); } } void y() { digitalWrite(B,HIGH); digitalWrite(D,HIGH); for(int o=0;o<=time;) { delay(1000); o=o+1000; } digitalWrite(B,LOW); digitalWrite(D,LOW); for(int i=0;i<3;i++) { delay(500); digitalWrite(C, HIGH); delay(500); digitalWrite(C, LOW); } } void 紧急() { digitalWrite(A,HIGH); digitalWrite(D,HIGH); digitalWrite(B,LOW); digitalWrite(E,LOW); } A代表车红灯, B是车绿灯亮, DE是另一边的 int k=12; 定义k代表的端口 pinMode(k,OUTPUT); 定义k代表的端口为输出端口 pinMode(k,INPUT); 按键 delay(10000); 执行下一个函数隔的时间 HIGH 高电平代表灯亮 LOW 低 灭 digitalWrite(k,HIGH或LOW);定义k为高或低 digitalread(k); 读取k为高或低 Arduino板子通电或复位后,即会开始执行setup() 函数中的程序,该部分只会执行一次。 在setup() 函数中的程序执行完后,Ardui

最新推荐

recommend-type

基于STM32控制遥控车的蓝牙应用程序

基于STM32控制遥控车的蓝牙应用程序
recommend-type

Memcached 1.2.4 版本源码包

粤嵌gec6818开发板项目Memcached是一款高效分布式内存缓存解决方案,专为加速动态应用程序和减轻数据库压力而设计。它诞生于Danga Interactive,旨在增强LiveJournal.com的性能。面对该网站每秒数千次的动态页面请求和超过七百万的用户群,Memcached成功实现了数据库负载的显著减少,优化了资源利用,并确保了更快的数据访问速度。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

软件项目开发全过程文档资料.zip

软件项目开发全过程文档资料.zip
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】使用Seaborn和Plotly进行数据可视化项目

![【实战演练】使用Seaborn和Plotly进行数据可视化项目](https://ask.qcloudimg.com/http-save/yehe-5669851/lifus0nfda.jpeg) # 1. 数据可视化的基础** 数据可视化是指将数据转换为图形或图表,以帮助人们理解和解释数据。它是一种强大的工具,可以揭示数据中的模式、趋势和异常情况,从而帮助人们做出更好的决策。 数据可视化有许多不同的类型,包括条形图、折线图、散点图和饼图。每种类型都有其独特的优点和缺点,具体选择哪种类型取决于数据类型和要传达的信息。 在创建数据可视化时,重要的是要考虑以下因素: * **受众:**