java 差分进化算法源代码
时间: 2023-11-03 10:05:31 浏览: 69
差分进化算法源码
这里提供了一个Java实现的差分进化算法的源代码,可以用于解决多元函数的最优解问题。该算法的核心思想是通过不断地迭代和交叉变异来寻找最优解。具体实现可以参考以下步骤:
1.定义种群大小、交叉率、变异率等参数;
2.初始化种群,生成随机的初始解;
3.计算每个个体的适应度函数值;
4.进行迭代,直到满足停止条件;
5.在每次迭代中,进行交叉和变异操作,生成新的个体,并计算其适应度函数值;
6.选择适应度最高的个体作为下一代的父代。
以下是一个简单的Java差分进化算法的实现代码,仅供参考:
```
public class DifferentialEvolution {
private int populationSize;
private double crossoverRate;
private double mutationRate;
private int maxGenerations;
private double[][] population;
private double[] fitnessValues;
private int dimensions;
private double[] bestSolution;
private double bestFitness;
public DifferentialEvolution(int populationSize, double crossoverRate, double mutationRate, int maxGenerations, int dimensions) {
this.populationSize = populationSize;
this.crossoverRate = crossoverRate;
this.mutationRate = mutationRate;
this.maxGenerations = maxGenerations;
this.dimensions = dimensions;
this.population = new double[populationSize][dimensions];
this.fitnessValues = new double[populationSize];
this.bestSolution = new double[dimensions];
this.bestFitness = Double.MAX_VALUE;
}
public void evolve() {
initializePopulation();
evaluatePopulation();
for (int i = 0; i < maxGenerations; i++) {
double[][] newPopulation = new double[populationSize][dimensions];
for (int j = 0; j < populationSize; j++) {
double[] parent = selectParent();
double[] mutant = mutate(parent);
double[] trial = crossover(parent, mutant);
newPopulation[j] = trial;
}
population = newPopulation;
evaluatePopulation();
}
}
private void initializePopulation() {
for (int i = 0; i < populationSize; i++) {
for (int j = 0; j < dimensions; j++) {
population[i][j] = Math.random();
}
}
}
private void evaluatePopulation() {
for (int i = 0; i < populationSize; i++) {
double fitness = fitness(population[i]);
fitnessValues[i] = fitness;
if (fitness < bestFitness) {
bestFitness = fitness;
bestSolution = population[i];
}
}
}
private double[] selectParent() {
int r1 = (int) (Math.random() * populationSize);
int r2 = (int) (Math.random() * populationSize);
int r3 = (int) (Math.random() * populationSize);
while (r1 == r2 || r1 == r3 || r2 == r3) {
r1 = (int) (Math.random() * populationSize);
r2 = (int) (Math.random() * populationSize);
r3 = (int) (Math.random() * populationSize);
}
double[] parent = new double[dimensions];
for (int i = 0; i < dimensions; i++) {
parent[i] = population[r1][i] + mutationRate * (population[r2][i] - population[r3][i]);
}
return parent;
}
private double[] mutate(double[] parent) {
double[] mutant = new double[dimensions];
for (int i = 0; i < dimensions; i++) {
mutant[i] = parent[i] + mutationRate * (Math.random() - 0.5);
}
return mutant;
}
private double[] crossover(double[] parent, double[] mutant) {
double[] trial = new double[dimensions];
int j = (int) (Math.random() * dimensions);
for (int i = 0; i < dimensions; i++) {
if (Math.random() < crossoverRate || i == j) {
trial[i] = mutant[i];
} else {
trial[i] = parent[i];
}
}
return trial;
}
private double fitness(double[] solution) {
// TODO: define fitness function
return 0;
}
public double[] getBestSolution() {
return bestSolution;
}
public double getBestFitness() {
return bestFitness;
}
}
```
阅读全文