请帮我写python代码,用t-SNE对cifar-10降维,并进行可视化输出
时间: 2024-05-16 19:12:05 浏览: 240
好的,以下是代码实现:
```python
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from tensorflow.keras.datasets import cifar10
# 加载CIFAR-10数据集
(train_images, train_labels), (test_images, test_labels) = cifar10.load_data()
# 将数据转化为一维数组
train_images_flat = np.reshape(train_images, (train_images.shape[0], -1))
# 进行t-SNE降维
tsne = TSNE(n_components=2, random_state=0)
train_images_tsne = tsne.fit_transform(train_images_flat)
# 可视化降维后的数据
df = pd.DataFrame(train_images_tsne, columns=['x', 'y'])
df['label'] = train_labels
plt.figure(figsize=(10, 10))
plt.scatter(df['x'], df['y'], c=df['label'], cmap='jet')
plt.title('t-SNE Visualization of CIFAR-10')
plt.show()
```
希望这个代码对你有所帮助!如果你还有其他问题,可以继续问我。
阅读全文