基于pytorch实现transformer分类minist
时间: 2023-11-13 19:06:19 浏览: 146
以下是基于Pytorch实现Transformer分类MNIST的代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
# 定义超参数
batch_size = 64
num_epochs = 10
lr = 0.001
num_classes = 10
d_model = 256
num_heads = 8
num_layers = 6
dropout = 0.1
# 定义Transformer模型
class Transformer(nn.Module):
def __init__(self, d_model, num_heads, num_layers, num_classes, dropout):
super(Transformer, self).__init__()
self.d_model = d_model
self.num_heads = num_heads
self.num_layers = num_layers
self.embedding = nn.Embedding(784, d_model)
self.pos_encoding = nn.Parameter(torch.zeros(1, 784, d_model))
self.dropout = nn.Dropout(dropout)
self.transformer = nn.Transformer(d_model, num_heads, num_layers)
self.fc = nn.Linear(d_model, num_classes)
def forward(self, x):
x = self.embedding(x) * (self.d_model ** 0.5)
x = x + self.pos_encoding[:, :x.size(1), :]
x = self.dropout(x)
x = x.permute(1, 0, 2)
output = self.transformer(x)
output = output.permute(1, 0, 2)
output = output[:, -1, :]
output = self.fc(output)
return output
# 加载数据集
train_dataset = datasets.MNIST(root="dataset/", train=True, transform=transforms.ToTensor(), download=True)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_dataset = datasets.MNIST(root="dataset/", train=False, transform=transforms.ToTensor(), download=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)
# 初始化模型和优化器
model = Transformer(d_model, num_heads, num_layers, num_classes, dropout)
optimizer = optim.Adam(model.parameters(), lr=lr)
# 训练模型
for epoch in range(num_epochs):
for batch_idx, (data, targets) in enumerate(train_loader):
data = data.reshape(data.shape[0], -1)
# 前向传播
output = model(data)
loss = nn.CrossEntropyLoss()(output, targets)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print("Epoch [{}/{}], Batch [{}/{}], Loss: {:.4f}".format(epoch+1, num_epochs, batch_idx+1, len(train_loader), loss.item()))
# 测试模型
with torch.no_grad():
correct = 0
total = 0
for data, targets in test_loader:
data = data.reshape(data.shape[0], -1)
output = model(data)
_, predicted = torch.max(output.data, 1)
total += targets.size(0)
correct += (predicted == targets).sum().item()
print("Accuracy on test set: {:.2f}%".format(correct / total * 100))
```
在这个例子中,我们使用了Pytorch内置的Transformer模型,同时也自定义了一些层和参数。我们将784维的MNIST图像像素值作为输入,经过一个嵌入层转换成d_model维的向量,然后加上位置编码。接着,我们将数据传入Transformer模型,最后输出一个10维的向量,代表每个类别的概率。在训练过程中,我们使用交叉熵损失函数并使用Adam优化器进行优化。在测试过程中,我们计算了模型在测试集上的准确率。
阅读全文