卷积变分自编码器pytorch代码
时间: 2024-04-14 12:24:22 浏览: 116
卷积变分自编码器(Convolutional Variational Autoencoder,简称CVAE)是一种基于卷积神经网络的自编码器模型,用于生成具有潜在空间表示的图像。下面是一个使用PyTorch实现的简单示例代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class Encoder(nn.Module):
def __init__(self, latent_dim):
super(Encoder, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=2, padding=1)
self.fc_mu = nn.Linear(32*8*8, latent_dim)
self.fc_logvar = nn.Linear(32*8*8, latent_dim)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = x.view(x.size(0), -1)
mu = self.fc_mu(x)
logvar = self.fc_logvar(x)
return mu, logvar
class Decoder(nn.Module):
def __init__(self, latent_dim):
super(Decoder, self).__init__()
self.fc = nn.Linear(latent_dim, 32*8*8)
self.deconv1 = nn.ConvTranspose2d(32, 16, kernel_size=4, stride=2, padding=1)
self.deconv2 = nn.ConvTranspose2d(16, 3, kernel_size=4, stride=2, padding=1)
def forward(self, z):
x = self.fc(z)
x = x.view(x.size(0), 32, 8, 8)
x = F.relu(self.deconv1(x))
x = torch.sigmoid(self.deconv2(x))
return x
class CVAE(nn.Module):
def __init__(self, latent_dim):
super(CVAE, self).__init__()
self.encoder = Encoder(latent_dim)
self.decoder = Decoder(latent_dim)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
z = mu + eps * std
return z
def forward(self, x):
mu, logvar = self.encoder(x)
z = self.reparameterize(mu, logvar)
recon_x = self.decoder(z)
return recon_x, mu, logvar
# 训练过程
def train(model, train_loader, optimizer, epoch):
model.train()
train_loss = 0
for batch_idx, (data, _) in enumerate(train_loader):
optimizer.zero_grad()
recon_batch, mu, logvar = model(data)
loss = loss_function(recon_batch, data, mu, logvar)
loss.backward()
train_loss += loss.item()
optimizer.step()
print('Epoch: {} Average loss: {:.4f}'.format(epoch, train_loss / len(train_loader.dataset)))
# 损失函数
def loss_function(recon_x, x, mu, logvar):
BCE = F.binary_cross_entropy(recon_x, x.view(-1, 3*32*32), reduction='sum')
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return BCE + KLD
# 示例使用CIFAR-10数据集进行训练
latent_dim = 20
model = CVAE(latent_dim)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
train(model, train_loader, optimizer, epoch=10)
```
这是一个简单的卷积变分自编码器的PyTorch代码示例,其中包括了编码器、解码器和整个CVAE模型的定义,以及训练过程和损失函数的定义。你可以根据自己的需求进行修改和扩展。希望对你有帮助!
阅读全文