写一个用遗传算法解决VRP问题的代码
时间: 2023-02-23 07:51:20 浏览: 118
下面是一个使用 Python 实现的遗传算法解决 VRP 问题的代码示例:
```
import random
import numpy as np
class VRP:
def __init__(self, num_customers, vehicle_capacity, demand, distance_matrix):
self.num_customers = num_customers
self.vehicle_capacity = vehicle_capacity
self.demand = demand
self.distance_matrix = distance_matrix
def fitness(self, individual):
# 计算路径长度
path_length = 0
current_capacity = self.vehicle_capacity
for i in range(self.num_customers + 1):
from_node = individual[i]
to_node = individual[i + 1]
path_length += self.distance_matrix[from_node][to_node]
current_capacity -= self.demand[to_node]
if current_capacity < 0:
return float('inf')
return path_length
def generate_random_individual(self):
# 生成随机的路径
individual = np.arange(self.num_customers + 1)
np.random.shuffle(individual[1:])
return individual
def mutate(self, individual):
# 变异
node1, node2 = np.random.choice(individual, 2, replace=False)
individual[node1], individual[node2] = individual[node2], individual[node1]
return individual
def crossover(self, individual1, individual2):
# 交叉
cut_point = np.random.randint(1, self.num_customers)
new_individual = np.concatenate((individual1[:cut_point], individual2[cut_point:]))
new_individual = np.unique(new_individual)
if len(new_individual) < self.num_customers + 1:
remaining = np.setdiff1d(np.arange(self.num_customers + 1), new_individual)
new_individual = np.concatenate((new_individual, remaining))
return new_individual
def genetic_algorithm(vrp, population_size=100, mutation_prob=0.1, num_generations=1000):
population = [vrp.generate_random_individual() for _ in range(population_size)]
for generation in range(num_generations):
# 计算适应度
fitness = [vrp.fitness(individual) for individual in population]
best_individual = population[np.argmin(fitness)]
if min(fitness) == 0:
break
# 选择
population = [population[i] for i in np.argsort(fitness)[:population_size]]
# 交叉
阅读全文