用C++和opencv实现连通区域标记的二次扫描算法
时间: 2023-05-29 11:03:34 浏览: 231
以下是使用C和OpenCV实现连通区域标记的二次扫描算法的示例代码:
```
#include <stdio.h>
#include <stdlib.h>
#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;
int main(int argc, char** argv)
{
// Load the input image
Mat image = imread("input_image.jpg", IMREAD_GRAYSCALE);
// Check if the image is loaded successfully
if (image.empty())
{
printf("Could not open or find the image\n");
return -1;
}
// Threshold the image to create a binary image
Mat binary_image;
threshold(image, binary_image, 128, 255, THRESH_BINARY);
// Create a label matrix to store the connected component labels
Mat label_matrix(binary_image.size(), CV_32SC1);
// Initialize the label matrix to -1
label_matrix.setTo(-1);
// Define a label variable to assign to connected components
int label = 0;
// Perform the first pass of the algorithm to assign labels to connected components
for (int i = 0; i < binary_image.rows; i++)
{
for (int j = 0; j < binary_image.cols; j++)
{
if (binary_image.at<uchar>(i, j) == 255)
{
// Check the neighboring pixels for labels
int left_label = (j > 0) ? label_matrix.at<int>(i, j - 1) : -1;
int top_label = (i > 0) ? label_matrix.at<int>(i - 1, j) : -1;
if (left_label == -1 && top_label == -1)
{
// If there are no labels in the neighboring pixels, assign a new label
label_matrix.at<int>(i, j) = label;
label++;
}
else if (left_label != -1 && top_label == -1)
{
// If there is a label in the left pixel, assign it to the current pixel
label_matrix.at<int>(i, j) = left_label;
}
else if (left_label == -1 && top_label != -1)
{
// If there is a label in the top pixel, assign it to the current pixel
label_matrix.at<int>(i, j) = top_label;
}
else if (left_label != -1 && top_label != -1)
{
// If there are labels in both neighboring pixels, assign the minimum label to the current pixel
int min_label = min(left_label, top_label);
label_matrix.at<int>(i, j) = min_label;
// Update the equivalence table
if (left_label != top_label)
{
for (int k = 0; k < j; k++)
{
if (label_matrix.at<int>(i, k) == left_label)
{
label_matrix.at<int>(i, k) = top_label;
}
}
}
}
}
}
}
// Perform the second pass of the algorithm to update the labels based on the equivalence table
for (int i = 0; i < binary_image.rows; i++)
{
for (int j = 0; j < binary_image.cols; j++)
{
if (label_matrix.at<int>(i, j) != -1)
{
label_matrix.at<int>(i, j) = label_matrix.at<int>(i, label_matrix.at<int>(i, j));
}
}
}
// Draw the labeled regions on the original image
Mat result_image = image.clone();
for (int i = 0; i < binary_image.rows; i++)
{
for (int j = 0; j < binary_image.cols; j++)
{
if (label_matrix.at<int>(i, j) != -1)
{
Scalar color = Scalar(rand() % 256, rand() % 256, rand() % 256);
rectangle(result_image, Point(j, i), Point(j, i), color, 2);
}
}
}
// Display the result image
imshow("Result Image", result_image);
waitKey(0);
return 0;
}
```
此代码使用OpenCV库加载输入图像,并将其阈值化为二进制图像。然后,它使用二次扫描算法将标签分配给连通组件,并更新标签以考虑等价性。最后,它在原始图像上绘制标记的区域,并显示结果图像。
阅读全文