我需要一个使用jupyter notebook上面建立big mart模型的代码
时间: 2023-10-23 21:11:31 浏览: 84
你好,关于建立big mart模型的代码,我可以提供给你一份Python代码的参考,但是需要你先提供有关big mart数据集的详细信息,以便正确地实现模型。
以下是一份简单的Python代码示例:
```python
# 导入所需库
import pandas as pd
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
# 加载数据集
data = pd.read_csv('big_mart_data.csv')
# 处理数据集
data.fillna(0, inplace=True)
# 划分数据集为训练集和测试集
train, test = train_test_split(data, test_size=0.2)
# 确定特征和目标列
features = ['Item_Weight', 'Item_MRP', 'Outlet_Establishment_Year']
target = 'Item_Outlet_Sales'
# 创建随机森林模型并拟合
rf = RandomForestRegressor(n_estimators=200, max_depth=5, min_samples_leaf=100)
rf.fit(train[features], train[target])
# 预测并计算均方误差
predictions = rf.predict(test[features])
mse = mean_squared_error(test[target], predictions)
print("均方误差为:", mse)
```
希望这份代码可以帮助你开始学习和构建big mart模型。
阅读全文
相关推荐















