python 如何运用回归曲线判断异常值并输出异常数据
时间: 2024-02-21 22:08:08 浏览: 120
要运用回归曲线来判断异常值并输出异常数据,可以按照以下步骤进行:
1. 使用 Python 中的 Pandas 和 Matplotlib 库导入数据并绘制回归曲线。
```python
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
# 导入数据
data = pd.read_csv('data.csv')
x = data['x'].values.reshape(-1, 1)
y = data['y'].values.reshape(-1, 1)
# 绘制回归曲线
model = LinearRegression()
model.fit(x, y)
y_pred = model.predict(x)
plt.scatter(x, y)
plt.plot(x, y_pred, color='red')
plt.show()
```
2. 计算每个数据点的残差(即实际值与预测值之间的差值)。
```python
residuals = y - y_pred
```
3. 计算残差的标准差和均值。
```python
std_residuals = residuals.std()
mean_residuals = residuals.mean()
```
4. 判断哪些数据点的残差大于两倍的标准差。
```python
outliers = abs(residuals - mean_residuals) > 2 * std_residuals
```
5. 输出异常数据。
```python
outlier_data = data[outliers]
print(outlier_data)
```
完整代码如下:
```python
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
# 导入数据
data = pd.read_csv('data.csv')
x = data['x'].values.reshape(-1, 1)
y = data['y'].values.reshape(-1, 1)
# 绘制回归曲线
model = LinearRegression()
model.fit(x, y)
y_pred = model.predict(x)
plt.scatter(x, y)
plt.plot(x, y_pred, color='red')
plt.show()
# 计算残差
residuals = y - y_pred
# 计算残差的标准差和均值
std_residuals = residuals.std()
mean_residuals = residuals.mean()
# 判断异常值
outliers = abs(residuals - mean_residuals) > 2 * std_residuals
# 输出异常数据
outlier_data = data[outliers]
print(outlier_data)
```
阅读全文
相关推荐


















