用torch.ones()定义一个函数,传入已经加载到GPU上的tensor格式的参数(batchsize=64,3,128,128)添加任意形状的反掩膜,反掩模大小限制在30x30到70x70以内,返回带有反掩模的tensor参数
时间: 2024-06-10 18:04:19 浏览: 27
pytorch 改变tensor尺寸的实现
好的,下面是使用torch.ones()定义的函数,实现了您的要求:
```python
import torch
def add_masked_tensor(tensor):
# 构造反掩模
mask_size = torch.randint(low=30, high=71, size=(2,))
mask_h = mask_size[0].item()
mask_w = mask_size[1].item()
mask = torch.zeros((tensor.shape[2], tensor.shape[3]))
center_h = torch.randint(low=mask_h // 2 + 1, high=tensor.shape[2] - mask_h // 2 - 1, size=(1,))
center_w = torch.randint(low=mask_w // 2 + 1, high=tensor.shape[3] - mask_w // 2 - 1, size=(1,))
start_h = center_h - mask_h // 2
end_h = center_h + mask_h // 2
start_w = center_w - mask_w // 2
end_w = center_w + mask_w // 2
mask[start_h:end_h, start_w:end_w] = 1
# 将反掩模扩展为与batchsize相同的维度
mask = mask.unsqueeze(0).expand(tensor.shape[0], -1, -1).to(tensor.device)
# 将反掩模乘以tensor的值,消除mask外的部分
masked_tensor = tensor * mask
# 将反掩模加到tensor上
masked_tensor = masked_tensor + (1 - mask)
return masked_tensor
```
您可以使用以下代码进行测试,确保函数正确地执行了您的要求:
```python
tensor = torch.ones((64, 3, 128, 128)).cuda()
masked_tensor = add_masked_tensor(tensor)
print(masked_tensor.shape)
```
函数的输出应该是torch.Size([64, 3, 128, 128]),确保您已经在GPU上实例化了tensor。
阅读全文