注释这段代码 pos_type *posp; pos_top = NULL; while(top!=NULL) { posp=new pos_type; posp->ipos=top->ipos; posp->jpos=top->jpos; posp->next=pos_top; pos_top=posp; top=top->next; } while(pos_top!=NULL) { printf("(%d,%d) ",pos_top->ipos,pos_top->jpos); pos_top=pos_top->next; }
时间: 2024-03-14 13:49:05 浏览: 164
这段代码定义了一个结构体 `pos_type`,其中包含了两个整型变量 `ipos` 和 `jpos`,以及一个指针 `next`,用来指向下一个 `pos_type` 结构体。接着定义了一个指针变量 `posp` 和一个指针变量 `pos_top`,并将 `pos_top` 初始化为 `NULL`。在 `while` 循环中,将 `top` 链表中的元素逐个取出,并将其值赋给 `posp` 中的 `ipos` 和 `jpos` 成员变量,然后将 `posp` 加入到链表 `pos_top` 的头部。最后通过 `top=top->next` 将 `top` 指针指向下一个元素,继续循环,直到 `top` 为空。
接下来的 `while` 循环将 `pos_top` 链表中的元素逐个取出,并打印出每个元素的 `ipos` 和 `jpos` 成员变量。注意,这里的 `pos_top=pos_top->next` 语句将 `pos_top` 指针指向下一个元素,这样才能逐个取出链表中的元素并打印出来。
相关问题
function sol_kf(filename)%pos文件 global glc; %read solution file solution=readGINavsol(filename); n=size(solution,1); %initialize 初始化 x = zeros(6,1);%state vector xP = zeros(6,6);%covariance of x协方差阵 sqrt_accPSD_hor=15;%m/s^2/sqrt(Hz) sqrt_accPSD_up=0.1;%m/s^2/sqrt(Hz) %三个方向 accPSD_enu =zeros(3,3); accPSD_enu(1,1)=(sqrt_accPSD_hor)^2; accPSD_enu(2,2)=(sqrt_accPSD_hor)^2; accPSD_enu(3,3)=sqrt_accPSD_up^2; bInitialized=0; time_x = solution(1).time; %all epochs for m=1:n %load data of new epoch sol = solution(m); Cne=xyz2enu(sol.pos);%转换到地球坐标系 accPSD=Cne'*accPSD_enu*Cne; vel=sol.vel'; pos=sol.pos'; posP=[sol.posP(1) sol.posP(4) sol.posP(6); sol.posP(4) sol.posP(2) sol.posP(5); sol.posP(6) sol.posP(5) sol.posP(3)]; velP=[sol.velP(1) sol.velP(4) sol.velP(6); sol.velP(4) sol.velP(2) sol.velP(5); sol.velP(6) sol.velP(5) sol.velP(3)]; dt = timediff(sol.time,time_x); if dt>15 bInitialized=0; end %initialize if ~bInitialized x = [pos; vel]; xP=zeros(6,6); xP(1:3,1:3)= eye(3)*1e16; xP(4:6,4:6)= eye(3)*100; if sol.posP(1)>0 xP(1:3,1:3)= posP; end if sol.velP(1)>0 xP(4:6,4:6)= velP; end time_x = sol.time; bInitialized=1; continue; end %%%%%%%%%%%%%%%to do%%%%%%%%%%%%%%%%%%%%%%%%% %step 1: prediction %Q计算系统噪声协方差阵 %step 2: update %R 观测噪声协方差阵 这是使用MATLAB实现卡尔曼滤波的代码,请帮我完成它
好的,我会帮您完成这段代码。
首先,我们需要计算系统噪声协方差阵 Q,可以使用以下代码:
```
dt = timediff(sol.time,time_x);
Q = zeros(6,6);
Q(1:3,1:3) = eye(3)*sqrt_accPSD_hor^2*dt^3/3;
Q(1:3,4:6) = eye(3)*sqrt_accPSD_hor^2*dt^2/2;
Q(4:6,1:3) = eye(3)*sqrt_accPSD_hor^2*dt^2/2;
Q(4:6,4:6) = eye(3)*sqrt_accPSD_hor^2*dt + eye(3)*sqrt_accPSD_up^2*dt^3/3;
```
然后,我们可以进行卡尔曼滤波的预测步骤,使用以下代码:
```
A = eye(6);
A(1:3,4:6) = eye(3)*dt;
x = A*x;
xP = A*xP*A' + Q;
```
最后,我们还需要进行卡尔曼滤波的更新步骤。R 观测噪声协方差阵需要根据具体情况进行设置,这里我们假设观测噪声协方差阵为 1 米。
```
H = eye(6);
R = eye(6)*1;
K = xP*H'/(H*xP*H' + R);
x = x + K*(pos' - H*x);
xP = (eye(6) - K*H)*xP;
```
最终,完整的代码如下:
```
function sol_kf(filename)
%pos文件
global glc;
%read solution file
solution=readGINavsol(filename);
n=size(solution,1);
%initialize 初始化
x = zeros(6,1);%state vector
xP = zeros(6,6);%covariance of x协方差阵
sqrt_accPSD_hor=15;%m/s^2/sqrt(Hz)
sqrt_accPSD_up=0.1;%m/s^2/sqrt(Hz)
%三个方向
accPSD_enu =zeros(3,3);
accPSD_enu(1,1)=(sqrt_accPSD_hor)^2;
accPSD_enu(2,2)=(sqrt_accPSD_hor)^2;
accPSD_enu(3,3)=sqrt_accPSD_up^2;
bInitialized=0;
time_x = solution(1).time;
% Kalman filter loop
for m=1:n
%load data of new epoch
sol = solution(m);
Cne=xyz2enu(sol.pos);%转换到地球坐标系
accPSD=Cne'*accPSD_enu*Cne;
vel=sol.vel';
pos=sol.pos';
posP=[sol.posP(1) sol.posP(4) sol.posP(6);
sol.posP(4) sol.posP(2) sol.posP(5);
sol.posP(6) sol.posP(5) sol.posP(3)];
velP=[sol.velP(1) sol.velP(4) sol.velP(6);
sol.velP(4) sol.velP(2) sol.velP(5);
sol.velP(6) sol.velP(5) sol.velP(3)];
dt = timediff(sol.time,time_x);
if dt>15
bInitialized=0;
end
%initialize
if ~bInitialized
x = [pos; vel];
xP=zeros(6,6);
xP(1:3,1:3)= eye(3)*1e16;
xP(4:6,4:6)= eye(3)*100;
if sol.posP(1)>0
xP(1:3,1:3)= posP;
end
if sol.velP(1)>0
xP(4:6,4:6)= velP;
end
time_x = sol.time;
bInitialized=1;
continue;
end
%step 1: prediction
%Q计算系统噪声协方差阵
Q = zeros(6,6);
Q(1:3,1:3) = eye(3)*sqrt_accPSD_hor^2*dt^3/3;
Q(1:3,4:6) = eye(3)*sqrt_accPSD_hor^2*dt^2/2;
Q(4:6,1:3) = eye(3)*sqrt_accPSD_hor^2*dt^2/2;
Q(4:6,4:6) = eye(3)*sqrt_accPSD_hor^2*dt + eye(3)*sqrt_accPSD_up^2*dt^3/3;
A = eye(6);
A(1:3,4:6) = eye(3)*dt;
x = A*x;
xP = A*xP*A' + Q;
%step 2: update
%R 观测噪声协方差阵
H = eye(6);
R = eye(6)*1;
K = xP*H'/(H*xP*H' + R);
x = x + K*(pos' - H*x);
xP = (eye(6) - K*H)*xP;
end
```
希望这个代码可以帮到您!
function sol_kf(filename) global glc; %read solution file solution=readGINavsol(filename); n=size(solution,1); %initialize 对状态进行初始化 x = zeros(6,1);%state vector 状态向量 xP = zeros(6,6);%covariance of x 协方差 %过程噪声密度 sqrt_accPSD_hor=15;%m/s^2/sqrt(Hz) sqrt_accPSD_up=0.1;%m/s^2/sqrt(Hz) accPSD_enu =zeros(3,3); accPSD_enu(1,1)=(sqrt_accPSD_hor)^2; accPSD_enu(2,2)=(sqrt_accPSD_hor)^2; accPSD_enu(3,3)=sqrt_accPSD_up^2; bInitialized=0; time_x = solution(1).time; %all epochs for i=1:n %load data of new epoch sol = solution(i); %转换矩阵 Cne=xyz2enu(sol.pos); %转换至地球坐标系下 accPSD=Cne'*accPSD_enu*Cne; vel=sol.vel'; pos=sol.pos'; %临时变量进行存储 posP=[sol.posP(1) sol.posP(4) sol.posP(6); sol.posP(4) sol.posP(2) sol.posP(5); sol.posP(6) sol.posP(5) sol.posP(3)]; velP=[sol.velP(1) sol.velP(4) sol.velP(6); sol.velP(4) sol.velP(2) sol.velP(5); sol.velP(6) sol.velP(5) sol.velP(3)]; dt = timediff(sol.time,time_x); %如果时间差很大,说明时间中断很久,则需要重新进行初始化 if dt>15 bInitialized=0; end %initialize if ~bInitialized x = [pos; vel]; xP=zeros(6,6); xP(1:3,1:3)= eye(3)*1e16; xP(4:6,4:6)= eye(3)*100; if sol.posP(1)>0 xP(1:3,1:3)= posP; end if sol.velP(1)>0 xP(4:6,4:6)= velP; end time_x = sol.time; bInitialized=1; continue; end %%%%%%%%%%%%%%%to do%%%%%%%%%%%%%%%%%%%%%%%%% %step 1: prediction %Phi %Q 补全该代码
%step 1: prediction
%Phi
dt = timediff(sol.time,time_x); %计算两个历元的时间差
F=zeros(6,6);
F(1:3,4:6)=eye(3)*dt;
Phi = [eye(3) eye(3)*dt; zeros(3,3) eye(3)];
%Q
Q=zeros(6,6);
Q(1:3,1:3)=eye(3)*0.25*dt^4*accPSD(1,1)+eye(3)*0.5*dt^3*accPSD(1,1); %水平方向
Q(1:3,4:6)=eye(3)*0.5*dt^2*accPSD(1,1); %水平方向
Q(4:6,1:3)=eye(3)*0.5*dt^2*accPSD(1,1); %水平方向
Q(4:6,4:6)=eye(3)*dt^2*accPSD(3,3); %垂直方向
%预测状态和协方差
x = Phi * x;
xP = Phi * xP * Phi' + Q;
%step 2: measurement update
if sol.posP(1)>0 %如果有位置信息
H = [eye(3) zeros(3,3)]; %测量矩阵
R=zeros(3,3);
R(1:2,1:2)=eye(2)*sol.posP(1)^2; %水平误差
R(3,3)=sol.posP(7)^2; %垂直误差
%计算卡尔曼增益
K = xP * H' * inv(H * xP * H' + R);
%测量更新状态和协方差
z = sol.pos';
dz = z - H * x;
dz(3) = rem(dz(3)+pi,2*pi)-pi; %处理航向角差异
x = x + K * dz;
xP = (eye(6) - K * H) * xP;
end
%更新历元时间
time_x = sol.time;
阅读全文