pytorch实现变分自动编码器
时间: 2023-12-07 11:39:05 浏览: 95
超球面变分自动编码器的Pytorch实现_Python_下载.zip
以下是使用PyTorch实现变分自动编码器的步骤:
1.导入所需的库和模块,包括torch、torch.nn、torch.nn.functional、torchvision等。
2.定义设备配置,判断是否有可用的GPU,如果有则使用GPU,否则使用CPU。
3.定义变分自动编码器的编码器和解码器。编码器由两个全连接层和一个输出层组成,解码器由一个全连接层和一个输出层组成。
4.定义变分自动编码器的前向传播函数forward(),其中包括编码器和解码器的前向传播过程。
5.定义变分自动编码器的损失函数,包括重构误差和KL散度。
6.定义优化器,使用Adam优化器。
7.训练模型,包括前向传播、计算损失、反向传播和优化器更新参数。
8.保存模型和生成样本图片。
下面是完整的代码实现:
```python
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from torchvision import transforms
from torchvision.utils import save_image
import matplotlib.pyplot as plt
# 设备配置
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 定义变分自动编码器的编码器和解码器
class VAE(nn.Module):
def __init__(self):
super(VAE, self).__init__()
self.fc1 = nn.Linear(784, 400)
self.fc21 = nn.Linear(400, 20)
self.fc22 = nn.Linear(400, 20)
self.fc3 = nn.Linear(20, 400)
self.fc4 = nn.Linear(400, 784)
def encode(self, x):
h1 = F.relu(self.fc1(x))
return self.fc21(h1), self.fc22(h1)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5*logvar)
eps = torch.randn_like(std)
return mu + eps*std
def decode(self, z):
h3 = F.relu(self.fc3(z))
return torch.sigmoid(self.fc4(h3))
def forward(self, x):
mu, logvar = self.encode(x.view(-1, 784))
z = self.reparameterize(mu, logvar)
return self.decode(z), mu, logvar
# 定义变分自动编码器的损失函数
def loss_function(recon_x, x, mu, logvar):
BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784), reduction='sum')
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return BCE + KLD
# 定义优化器
vae = VAE().to(device)
optimizer = torch.optim.Adam(vae.parameters(), lr=1e-3)
# 训练模型
def train(epoch):
vae.train()
train_loss = 0
for batch_idx, (data, _) in enumerate(train_loader):
data = data.to(device)
optimizer.zero_grad()
recon_batch, mu, logvar = vae(data)
loss = loss_function(recon_batch, data, mu, logvar)
loss.backward()
train_loss += loss.item()
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader),
loss.item() / len(data)))
print('====> Epoch: {} Average loss: {:.4f}'.format(
epoch, train_loss / len(train_loader.dataset)))
# 保存模型和生成样本图片
if not os.path.exists('./vae_samples'):
os.mkdir('./vae_samples')
def save_samples(epoch):
with torch.no_grad():
sample = torch.randn(64, 20).to(device)
sample = vae.decode(sample).cpu()
save_image(sample.view(64, 1, 28, 28), './vae_samples/sample_' + str(epoch) + '.png')
# 加载MNIST数据集
batch_size = 128
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transform, download=True)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
# 训练模型并保存样本图片
for epoch in range(1, 21):
train(epoch)
save_samples(epoch)
```
阅读全文