def writeabnormaldata(self,data_excel, dirname): mid_pcap = [] label_data = [] label_label = [] n = 1 # self.setDir(dirname) for i in range(len(data_excel)): if data_excel["data"][i] == 0: continue count = 0 mid_pcap.append(data_excel["data"][i]) data_number = bytes(str(data_excel["data"][i][2:-1]), encoding="utf-8") original = codecs.escape_decode(data_number, "hex-escape") path = "./" + dirname + "/第%d条数据流" % n + ".txt" with open(path, 'a') as f: label_data.append(original[0]) f.write(self.hexdump(original[0])) f.write("结束") label_label.append(n) count += 1 data_excel["data"][i] = 0 for j in range(i + 1, len(data_excel)): if data_excel["srcip"][i] == data_excel["srcip"][j] and data_excel["dstip"][i] == data_excel["dstip"][ j] and data_excel["sport"][i] == data_excel["sport"][j] and data_excel["dport"][i] == \ data_excel["dport"][j] and data_excel["proto"][i] == data_excel["proto"][j]: count += 1 if count>6 and count<=7: n += 1 count=0 mid_pcap.append(data_excel["data"][j]) data_number = bytes(data_excel["data"][j][2:-1], encoding="utf-8") original = codecs.escape_decode(data_number, "hex-escape") path = "./" + dirname + "/第%d条数据流" % n + ".txt" with open(path, 'a') as f: label_data.append(original[0]) f.write(self.hexdump(original[0])) f.write("结束") label_label.append(n) data_excel["data"][j] = 0 if count>0: n += 1 return label_data ,label_label

时间: 2023-06-03 11:04:23 浏览: 131
该函数的作用是将异常数据写入Excel表格,并存储到指定目录下。其中,mid_pcap、label_data和label_label是数据存储的中间变量,n表示数据的数量。具体的数据处理过程需要参考代码的其他部分。
相关问题

import os.path import gzip import pickle import os import numpy as np import urllib url_base = 'http://yann.lecun.com/exdb/mnist/' key_file = { 'train_img':'train-images-idx3-ubyte.gz', 'train_label':'train-labels-idx1-ubyte.gz', 'test_img':'t10k-images-idx3-ubyte.gz', 'test_label':'t10k-labels-idx1-ubyte.gz' } dataset_dir = os.path.dirname(os.path.abspath("_file_")) save_file = dataset_dir + "/mnist.pkl" train_num=60000 test_num=10000 img_dim=(1,28,28) img_size=784 def _download(file_name): file_path = dataset_dir+"/"+file_name if os.path.exists(file_path): return print("Downloading"+file_name+" ... ") urllib.request.urlretrieve(url_base + file_name,file_path) print("Done") def download_mnist(): for v in key_file.values(): _download(v) def _load_label(file_name): file_path = dataset_dir+ "/" +file_name print("Converting" + file_name +"to Numpy Array ...") with gzip.open(file_path,'rb') as f: labels = np.frombuffer(f.read(),np.uint8,offset=8) print("Done") return labels def _load_img(file_name): file_path=dataset_dir+"/"+file_name print("Converting"+file_name+"to Numpy Array ...") with gzip.open(file_path,'rb') as f: data = np.frombuffer(f.read(),np.uint8,offset=16) data = data.reshape(-1,img_size) print("Done") return data def _convert_numpy(): dataset = {} dataset['train_img'] = _load_img(key_file['train_img']) dataset['train_label'] = _load_label(key_file['train_label']) dataset['test_img'] = _load_img(key_file['test_img']) dataset['test_label'] = _load_label(key_file['test_label']) return dataset def init_mnist(): download_mnist() dataset = _convert_numpy() print("Creating pickle file ...") with open(save_file,'wb') as f: pickle.dump(dataset,f,-1) print("Done") if __name__ =='__main__': init_mnist()

这段代码是用于下载MNIST数据集并将数据集转换成Numpy数组格式的函数。MNIST数据集是一个手写数字识别数据集,包含了60000张训练图片和10000张测试图片。在函数中,首先定义了数据集的下载地址和四个文件的名称,然后定义了四个函数用于下载和转换数据集。其中,_load_label和_load_img函数用于将标签和图片数据转换成Numpy数组格式,并且在转换过程中使用了gzip库解压缩数据。_convert_numpy函数用于将四个Numpy数组合成一个字典类型的数据集。最后,init_mnist函数用于下载数据集并将数据集转换成Numpy数组格式,并使用pickle库将数据集保存到本地文件中。如果MNIST数据集已经下载并保存到本地文件中,则直接加载本地文件中的数据集。

import pickle import os dataset_dir=os.path.dirname(os.path.abspath("__file__")) save_file=dataset_dir+"/mnist.pkl" def _change_one_hot_label(x): T=np.zeros((X.size,10)) for idx, row in enumerate(T): row[X[idx]]=1 return T def load_mnist(normalize=True, flatten=True, one_hot_label=False): if not os.path.exists(save_file): print("请下载数据") with open(save_file,'rb')as f: dataset=pickle.load(f) if normalize: for key in ('train_img','test_img'): dataset[key]=dataset[key].astype(np.float32) dataset[key] /=255.0 if one_hot_label: dataset['train_label']=_change_one_hot_label(dataset['train_label']) dataset['test_label']=_change_one_hot_label(dataset['test_label']) if not flatten: for key in ('train_img','test.img'): dataset[key]=dataset[key].reshape(-1,1,28,28) return (dataset['train_img'],dataset['train_label']),(dataset['test_img'],dataset['test_label'])

这段代码实现的是加载 MNIST 数据集的函数 load_mnist。具体来说,该函数会读取本地 mnist.pkl 文件,将训练集和测试集中的图像数据和标签数据分别存储在 dataset 字典中,并根据传入的参数 normalize、flatten 和 one_hot_label 对这些数据进行处理。 normalize 参数用于指定是否对图像数据进行归一化处理,即将像素值从 0-255 缩放到 0-1 之间。如果 normalize=True,则对训练集和测试集中的图像数据进行归一化处理。 flatten 参数用于指定是否将图像数据展开成一维向量。如果 flatten=True,则将训练集和测试集中的图像数据展开成形状为 (n, 784) 的二维数组,其中 n 是图像数量。否则,将图像数据保留为原始形状 (n, 1, 28, 28)。 one_hot_label 参数用于指定是否对标签数据进行 one-hot 编码。如果 one_hot_label=True,则将训练集和测试集中的标签数据进行 one-hot 编码处理。 最后,该函数返回训练集和测试集的图像数据和标签数据。
阅读全文

相关推荐

# 定义数据集路径和标签 data_dir = "D:/wjd" # 数据集路径 labels = ['Ag', 'Al', 'Au', 'Cu', 'W', 'V', 'Mo', 'Ta'] # 标签 # 将数据集按照 80% - 20% 的比例划分为训练集和验证集 train_dir = os.path.join(data_dir, 'train') val_dir = os.path.join(data_dir, 'val') if not os.path.exists(val_dir): os.makedirs(train_dir) os.makedirs(val_dir) # 遍历每个标签的文件夹 for label in labels: label_dir = os.path.join(data_dir, label) images = os.listdir(label_dir) random.shuffle(images) # 随机打乱图像顺序 # 划分训练集和验证集 split_index = int(0.8 * len(images)) train_images = images[:split_index] val_images = images[split_index:] # 将训练集和验证集图像复制到对应的文件夹中 for image in train_images: src_path = os.path.join(label_dir, image) dst_path = os.path.join(train_dir, label, image) os.makedirs(os.path.dirname(dst_path), exist_ok=True) # 确保目标文件夹存在 shutil.copy(src_path, dst_path) for image in val_images: src_path = os.path.join(label_dir, image) dst_path = os.path.join(val_dir, label, image) os.makedirs(os.path.dirname(dst_path), exist_ok=True) # 确保目标文件夹存在 shutil.copy(src_path, dst_path) #print("数据集已成功划分为训练集和验证集。") # 定义数据预处理 transform_train = transforms.Compose([ transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) transform_val = transforms.Compose([ transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # 定义数据集 train_data = datasets.ImageFolder(train_dir, transform=transform) val_data = datasets.ImageFolder(val_dir, transform=transform),这里出现了错误

最新推荐

recommend-type

Linux中mkdir函数与Windows中_mkdir函数的区别

`_mkdir`函数只有一个参数`dirname`,用于指定目录路径,但没有提供设置权限的选项。这意味着在Windows上,使用`_mkdir`创建的目录通常会继承父目录的权限设置。函数成功创建目录时返回0,失败则返回-1。 总结来说...
recommend-type

【中国房地产业协会-2024研报】2024年第三季度房地产开发企业信用状况报告.pdf

行业研究报告、行业调查报告、研报
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自
recommend-type

如何在Springboot后端项目中实现前端的多人视频会议功能,并使用Vue.js与ElementUI进行界面开发?

要在Springboot后端项目中实现前端的多人视频会议功能,首先需要了解Springboot、WebRTC、Vue.js以及ElementUI的基本概念和用途。Springboot作为后端框架,负责处理业务逻辑和提供API接口;WebRTC技术则用于实现浏览器端的实时视频和音频通信;Vue.js作为一个轻量级的前端框架,用于构建用户界面;ElementUI提供了丰富的UI组件,可加速前端开发过程。 参考资源链接:[多人视频会议前端项目:Springboot与WebRTC的结合](https://wenku.csdn.net/doc/6jkpejn9x3?spm=1055.2569.3001