pytorch搭建的卷积神经网络怎么使用混淆矩阵
时间: 2023-09-17 20:11:01 浏览: 194
使用混淆矩阵可以评估卷积神经网络的分类效果。下面是使用PyTorch实现混淆矩阵的步骤:
1. 定义混淆矩阵
```python
confusion_matrix = torch.zeros(num_classes, num_classes)
```
2. 对每个batch的数据进行预测
```python
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
```
3. 计算混淆矩阵
```python
for t, p in zip(targets.view(-1), preds.view(-1)):
confusion_matrix[t.long(), p.long()] += 1
```
4. 计算各类别的精确度
```python
class_accuracy = confusion_matrix.diag()/confusion_matrix.sum(1)
```
完整代码如下:
```python
confusion_matrix = torch.zeros(num_classes, num_classes)
model.eval()
with torch.no_grad():
for inputs, targets in dataloader:
inputs, targets = inputs.to(device), targets.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
for t, p in zip(targets.view(-1), preds.view(-1)):
confusion_matrix[t.long(), p.long()] += 1
class_accuracy = confusion_matrix.diag()/confusion_matrix.sum(1)
```
其中,`num_classes`为分类的类别数,`dataloader`为数据加载器。
阅读全文
相关推荐


















