举一个关于KNX,zigbee在是stm32平台的例程,使用背景是智能开关发送,智能桌灯接收命令
时间: 2024-03-16 08:48:07 浏览: 116
以下是一个关于KNX和Zigbee在STM32平台的例程,用于智能开关发送和智能桌灯接收命令的示例。
对于KNX通信协议,我们可以使用KNX库来实现。对于Zigbee通信协议,我们可以使用Zigbee库来实现。在STM32平台上,我们可以使用HAL库来访问硬件资源,如GPIO和USART。
以下是一个使用STM32CubeMX和HAL库编写的示例程序:
```c
#include "main.h"
#include "knx.h"
#include "zigbee.h"
/* Configure system clock */
void SystemClock_Config(void);
/* Configure GPIOs */
void GPIO_Init(void);
/* Configure USARTs */
void USART1_Init(void);
void USART2_Init(void);
/* Configure KNX */
void KNX_Init(void);
void KNX_Send(uint8_t *data, uint16_t size);
/* Configure Zigbee */
void Zigbee_Init(void);
void Zigbee_Receive(uint8_t *data, uint16_t size);
int main(void)
{
/* Configure system clock */
SystemClock_Config();
/* Configure GPIOs */
GPIO_Init();
/* Configure USARTs */
USART1_Init();
USART2_Init();
/* Initialize KNX */
KNX_Init();
/* Initialize Zigbee */
Zigbee_Init();
while (1)
{
/* Read switch state */
uint8_t switch_state = HAL_GPIO_ReadPin(SWITCH_GPIO_Port, SWITCH_Pin);
/* If switch is pressed, send command to Zigbee */
if (switch_state == GPIO_PIN_RESET)
{
uint8_t command[] = {0x01, 0x02, 0x03}; // Example command
Zigbee_Send(command, sizeof(command));
}
/* Receive command from KNX */
uint8_t command[256];
uint16_t size = KNX_Receive(command, sizeof(command));
if (size > 0)
{
/* Process command */
HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_SET);
}
}
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
}
void GPIO_Init(void)
{
/* Configure LED pin */
GPIO_InitTypeDef GPIO_InitStruct = {0};
GPIO_InitStruct.Pin = LED_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LED_GPIO_Port, &GPIO_InitStruct);
/* Configure switch pin */
GPIO_InitStruct.Pin = SWITCH_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(SWITCH_GPIO_Port, &GPIO_InitStruct);
}
void USART1_Init(void)
{
/* Configure USART1 pins */
GPIO_InitTypeDef GPIO_InitStruct = {0};
GPIO_InitStruct.Pin = USART1_TX_Pin|USART1_RX_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF7_USART1;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* Configure USART1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 9600;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
}
void USART2_Init(void)
{
/* Configure USART2 pins */
GPIO_InitTypeDef GPIO_InitStruct = {0};
GPIO_InitStruct.Pin = USART2_TX_Pin|USART2_RX_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF7_USART2;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* Configure USART2 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
}
void KNX_Init(void)
{
/* Initialize KNX */
KNX_InitTypeDef KNX_InitStruct = {0};
KNX_InitStruct.Address = 0x1234; // Example KNX address
KNX_InitStruct.BaudRate = 9600; // Example KNX baud rate
KNX_Init(&KNX_InitStruct);
}
void KNX_Send(uint8_t *data, uint16_t size)
{
/* Send data over KNX */
KNX_SendFrame(data, size);
}
uint16_t KNX_Receive(uint8_t *data, uint16_t size)
{
/* Receive data from KNX */
KNX_FrameTypeDef frame;
uint16_t received_size = KNX_ReceiveFrame(&frame, size);
if (received_size > 0)
{
memcpy(data, frame.Data, received_size);
}
return received_size;
}
void Zigbee_Init(void)
{
/* Initialize Zigbee */
Zigbee_InitTypeDef Zigbee_InitStruct = {0};
Zigbee_InitStruct.Channel = 15; // Example Zigbee channel
Zigbee_InitStruct.PANID = 0x1234; // Example Zigbee PAN ID
Zigbee_Init(&Zigbee_InitStruct);
}
void Zigbee_Send(uint8_t *data, uint16_t size)
{
/* Send data over Zigbee */
Zigbee_SendFrame(data, size);
}
void Zigbee_Receive(uint8_t *data, uint16_t size)
{
/* Receive data from Zigbee */
uint16_t received_size = Zigbee_ReceiveFrame(data, size);
if (received_size > 0)
{
/* Process received data */
HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_SET);
}
}
```
在此示例中,我们使用STM32的USART1和USART2来分别实现KNX和Zigbee的通信。我们还使用两个GPIO来控制LED和开关。当开关被按下时,我们发送一个命令到Zigbee。当从KNX接收到命令时,我们点亮LED。
请注意,此示例程序仅供参考,具体实现可能因硬件资源和通信协议的不同而有所不同。
阅读全文