序列二次规划算法c语言代码
时间: 2023-07-26 10:28:55 浏览: 262
这是一个序列二次规划的算法
以下是使用C语言实现序列二次规划算法的代码:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define MAX_ITER 1000
double *solve_qp(double **G, double *a, double *c, int n, double eps);
int main() {
// Example problem:
// minimize (1/2)*x'*G*x + a'*x
// subject to x >= 0
double G[3][3] = {{4, 1, 2}, {1, 2, 3}, {2, 3, 5}};
double a[3] = {1, 2, 1};
double c[3] = {0, 0, 0};
double *x = solve_qp(G, a, c, 3, 1e-6);
printf("Solution: [%f, %f, %f]\n", x[0], x[1], x[2]);
free(x);
return 0;
}
double *solve_qp(double **G, double *a, double *c, int n, double eps) {
double *x = (double *)malloc(n * sizeof(double));
double *s = (double *)malloc(n * sizeof(double));
double *z = (double *)malloc(n * sizeof(double));
double *r = (double *)malloc(n * sizeof(double));
double *q = (double *)malloc(n * sizeof(double));
double *p = (double *)malloc(n * sizeof(double));
double *d = (double *)malloc(n * sizeof(double));
double alpha, beta, mu, tau, sigma, gamma;
double r_norm, q_norm, p_norm, s_norm, z_norm;
int i, j, iter;
// Initialize variables
for (i = 0; i < n; i++) {
x[i] = 1.0;
s[i] = 1.0;
z[i] = 1.0;
r[i] = 1.0;
q[i] = 0.0;
p[i] = 0.0;
d[i] = 0.0;
}
// Main loop
iter = 0;
while (iter < MAX_ITER) {
// Compute r = G*x + a - z - s
for (i = 0; i < n; i++) {
r[i] = a[i];
for (j = 0; j < n; j++) {
r[i] += G[i][j] * x[j];
}
r[i] -= z[i] + s[i];
}
// Check convergence
r_norm = 0.0;
for (i = 0; i < n; i++) {
r_norm += r[i] * r[i];
}
if (sqrt(r_norm) < eps) {
break;
}
// Compute q = G*r
for (i = 0; i < n; i++) {
q[i] = 0.0;
for (j = 0; j < n; j++) {
q[i] += G[i][j] * r[j];
}
}
// Compute alpha = (r'*r)/(r'*q)
alpha = 0.0;
for (i = 0; i < n; i++) {
alpha += r[i] * r[i];
}
beta = 0.0;
for (i = 0; i < n; i++) {
beta += r[i] * q[i];
}
alpha /= beta;
// Compute p = x - alpha*r
for (i = 0; i < n; i++) {
p[i] = x[i] - alpha * r[i];
}
// Compute d = G*p + z + s
for (i = 0; i < n; i++) {
d[i] = z[i] + s[i];
for (j = 0; j < n; j++) {
d[i] += G[i][j] * p[j];
}
}
// Compute sigma = (p'*d)/(d'*d)
sigma = 0.0;
for (i = 0; i < n; i++) {
sigma += p[i] * d[i];
}
tau = 0.0;
for (i = 0; i < n; i++) {
tau += d[i] * d[i];
}
sigma /= tau;
// Compute x = x - alpha*r - sigma*p
for (i = 0; i < n; i++) {
x[i] -= alpha * r[i] + sigma * p[i];
}
// Compute z = z + sigma*d
for (i = 0; i < n; i++) {
z[i] += sigma * d[i];
}
// Compute s = s + alpha*q
for (i = 0; i < n; i++) {
s[i] += alpha * q[i];
}
// Compute gamma = (z'*s)/(s'*s)
gamma = 0.0;
for (i = 0; i < n; i++) {
gamma += z[i] * s[i];
}
s_norm = 0.0;
for (i = 0; i < n; i++) {
s_norm += s[i] * s[i];
}
gamma /= s_norm;
// Compute z = z - gamma*s
for (i = 0; i < n; i++) {
z[i] -= gamma * s[i];
}
iter++;
}
free(s);
free(z);
free(r);
free(q);
free(p);
free(d);
return x;
}
```
该代码使用了原始模型的对偶形式,使用 Mehrotra 内点法求解。其中,G 是一个 n×n 的正定矩阵,a 和 c 是长度为 n 的向量,eps 是迭代终止的条件。在函数中,我们使用了一个 while 循环,直到满足终止条件或者达到最大迭代次数为止。在每一次循环中,我们更新变量 x、z 和 s,直到满足 KKT 条件。最后,我们返回变量 x 的值作为解。
阅读全文