汉字特征的灰度共生矩阵法的具体算法c语言如何实现
时间: 2024-02-11 08:07:58 浏览: 74
基于灰度共生矩阵的纹理特征提取算法
以下是汉字特征的灰度共生矩阵法的具体算法c语言实现的示例代码:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define N 256 // 灰度级数
#define D 4 // 灰度共生矩阵方向数
// 计算灰度共生矩阵
void calcGLCM(int** img, int height, int width, int** glcm) {
int i, j, k, di, dj, max;
int** count = (int**)malloc(N * sizeof(int*));
for (i = 0; i < N; i++) {
count[i] = (int*)malloc(N * sizeof(int));
for (j = 0; j < N; j++) {
count[i][j] = 0;
}
}
for (i = 0; i < height; i++) {
for (j = 0; j < width; j++) {
for (k = 0; k < D; k++) {
di = i + (int)round(sin(k * M_PI / D));
dj = j + (int)round(cos(k * M_PI / D));
if (di >= 0 && di < height && dj >= 0 && dj < width) {
count[img[i][j]][img[di][dj]]++;
}
}
}
}
// 归一化
max = 0;
for (i = 0; i < N; i++) {
for (j = 0; j < N; j++) {
if (count[i][j] > max) {
max = count[i][j];
}
}
}
for (i = 0; i < N; i++) {
for (j = 0; j < N; j++) {
glcm[i][j] = (int)round(count[i][j] * 255.0 / max);
}
}
// 释放内存
for (i = 0; i < N; i++) {
free(count[i]);
}
free(count);
}
// 计算灰度共生矩阵特征
void calcGLCMFeatures(int** glcm, int** features) {
int i, j, k;
double u1, u2, s1, s2, c, e, h;
int* sum_r = (int*)malloc(N * sizeof(int));
int* sum_c = (int*)malloc(N * sizeof(int));
for (i = 0; i < N; i++) {
sum_r[i] = 0;
sum_c[i] = 0;
for (j = 0; j < N; j++) {
sum_r[i] += glcm[i][j];
sum_c[j] += glcm[i][j];
}
}
u1 = u2 = s1 = s2 = c = e = h = 0.0;
for (i = 0; i < N; i++) {
for (j = 0; j < N; j++) {
u1 += i * glcm[i][j];
u2 += j * glcm[i][j];
s1 += pow(i - u1, 2) * glcm[i][j];
s2 += pow(j - u2, 2) * glcm[i][j];
c += pow(i - u1, 1) * pow(j - u2, 1) * glcm[i][j];
e += pow(glcm[i][j], 2);
if (glcm[i][j] > 0) {
h -= glcm[i][j] * log2(glcm[i][j]);
}
}
}
features[0][0] = (int)round(s1);
features[0][1] = (int)round(s2);
features[0][2] = (int)round(c);
features[0][3] = (int)round(e);
features[0][4] = (int)round(h);
// 释放内存
free(sum_r);
free(sum_c);
}
int main() {
// 读取图像
int height, width, i, j;
int** img = (int**)malloc(height * sizeof(int*));
for (i = 0; i < height; i++) {
img[i] = (int*)malloc(width * sizeof(int));
for (j = 0; j < width; j++) {
// 读取像素值
}
}
// 计算灰度共生矩阵
int** glcm = (int**)malloc(N * sizeof(int*));
for (i = 0; i < N; i++) {
glcm[i] = (int*)malloc(N * sizeof(int));
for (j = 0; j < N; j++) {
glcm[i][j] = 0;
}
}
calcGLCM(img, height, width, glcm);
// 计算灰度共生矩阵特征
int** features = (int**)malloc(1 * sizeof(int*));
features[0] = (int*)malloc(5 * sizeof(int));
calcGLCMFeatures(glcm, features);
// 输出特征向量
for (i = 0; i < 5; i++) {
printf("%d ", features[0][i]);
}
printf("\n");
// 释放内存
for (i = 0; i < height; i++) {
free(img[i]);
}
free(img);
for (i = 0; i < N; i++) {
free(glcm[i]);
}
free(glcm);
free(features[0]);
free(features);
return 0;
}
```
其中,calcGLCM()函数用于计算灰度共生矩阵,calcGLCMFeatures()函数用于计算灰度共生矩阵的特征,例如对比度、能量、熵等。在主函数中,首先读取汉字图像,然后调用calcGLCM()函数计算灰度共生矩阵,最后调用calcGLCMFeatures()函数计算灰度共生矩阵的特征向量。
阅读全文