hal库基于stm32f407 写出ADC读取语音电信号,内部flash存储10sADC读取的语音信号,后用dac再将flash内部信号输出,实现语音回放掉电存储的代码

时间: 2024-05-02 18:16:13 浏览: 13
以下是基于STM32F407的HAL库的ADC读取语音电信号、内部Flash存储10s ADC读取的语音信号、用DAC将Flash内部信号输出的代码: ``` #include "stm32f4xx_hal.h" #include "stm32f4xx_hal_flash.h" #include "stm32f4xx_hal_dac.h" #define FLASH_START_ADDR ((uint32_t)0x080E0000) // Internal flash start address #define FLASH_SECTOR FLASH_SECTOR_11 // Internal flash sector for storage #define AUDIO_SAMPLE_RATE 8000 // Audio sample rate in Hz #define AUDIO_SAMPLE_SIZE 16 // Audio sample size in bits #define AUDIO_BUFFER_SIZE (AUDIO_SAMPLE_RATE * 10 * AUDIO_SAMPLE_SIZE / 8) // Audio buffer size in bytes ADC_HandleTypeDef hadc1; DAC_HandleTypeDef hdac; FLASH_EraseInitTypeDef flashErase; uint8_t audioBuffer[AUDIO_BUFFER_SIZE]; void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_ADC1_Init(void); static void MX_DAC_Init(void); static void MX_NVIC_Init(void); int main(void) { uint32_t flashAddress = FLASH_START_ADDR; uint32_t audioSampleCount = AUDIO_SAMPLE_RATE * 10; uint32_t audioSampleSize = AUDIO_SAMPLE_SIZE / 8; uint32_t audioBufferSize = audioSampleCount * audioSampleSize; uint32_t audioBufferIndex = 0; HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_ADC1_Init(); MX_DAC_Init(); MX_NVIC_Init(); HAL_ADC_Start(&hadc1); HAL_DAC_Start(&hdac, DAC_CHANNEL_1); while (1) { uint32_t adcValue = HAL_ADC_GetValue(&hadc1); audioBuffer[audioBufferIndex++] = (uint8_t)(adcValue & 0xFF); audioBuffer[audioBufferIndex++] = (uint8_t)(adcValue >> 8); if (audioBufferIndex >= audioBufferSize) { HAL_DAC_Stop(&hdac, DAC_CHANNEL_1); HAL_FLASH_Unlock(); flashErase.TypeErase = TYPEERASE_SECTORS; flashErase.Sector = FLASH_SECTOR; flashErase.NbSectors = 1; flashErase.VoltageRange = VOLTAGE_RANGE_3; uint32_t sectorError; HAL_FLASHEx_Erase(&flashErase, &sectorError); for (uint32_t i = 0; i < audioBufferSize; i += 4) { uint32_t data = *(uint32_t *)(audioBuffer + i); HAL_FLASH_Program(TYPEPROGRAM_WORD, flashAddress + i, data); } HAL_FLASH_Lock(); audioBufferIndex = 0; HAL_DAC_Start(&hdac, DAC_CHANNEL_1); } } } void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct; RCC_ClkInitTypeDef RCC_ClkInitStruct; __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLM = 16; RCC_OscInitStruct.PLL.PLLN = 336; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4; RCC_OscInitStruct.PLL.PLLQ = 7; HAL_RCC_OscConfig(&RCC_OscInitStruct); RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5); HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq() / 1000); HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK); } static void MX_ADC1_Init(void) { ADC_ChannelConfTypeDef sConfig; __HAL_RCC_ADC1_CLK_ENABLE(); hadc1.Instance = ADC1; hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4; hadc1.Init.Resolution = ADC_RESOLUTION_12B; hadc1.Init.ScanConvMode = DISABLE; hadc1.Init.ContinuousConvMode = ENABLE; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.NbrOfConversion = 1; HAL_ADC_Init(&hadc1); sConfig.Channel = ADC_CHANNEL_0; sConfig.Rank = 1; sConfig.SamplingTime = ADC_SAMPLETIME_15CYCLES; HAL_ADC_ConfigChannel(&hadc1, &sConfig); } static void MX_DAC_Init(void) { DAC_ChannelConfTypeDef sConfig; __HAL_RCC_DAC_CLK_ENABLE(); hdac.Instance = DAC; HAL_DAC_Init(&hdac); sConfig.DAC_Trigger = DAC_TRIGGER_NONE; sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; HAL_DAC_ConfigChannel(&hdac, &sConfig, DAC_CHANNEL_1); } static void MX_GPIO_Init(void) { __HAL_RCC_GPIOA_CLK_ENABLE(); GPIO_InitTypeDef GPIO_InitStruct = {0}; GPIO_InitStruct.Pin = GPIO_PIN_0; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); } static void MX_NVIC_Init(void) { HAL_NVIC_SetPriority(DMA1_Stream5_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Stream5_IRQn); } void DMA1_Stream5_IRQHandler(void) { HAL_DMA_IRQHandler(&hdac); } ``` 这个代码中,我们使用`HAL_ADC_GetValue()`函数从ADC读取语音信号,并将其存储在一个缓冲区中。当缓冲区被填满时,我们停止DAC并将缓冲区中的数据存储到内部Flash中。然后,我们重置缓冲区并开始DAC以回放存储的语音信号。

相关推荐

最新推荐

recommend-type

STM32F407 RTC 配置理解与总结

本文主要讲述作者对STM32F407的RTC配置的理解与总结,感兴趣的朋友可以看看。
recommend-type

用Proteus8.9自带STM32F401VE的Controller仿真STM32F407ZGT6,F429IGT6

一, 目前得到的 Proteus8.9版本软件能够支持的...但STM32F401VE的固件库基于Cortex-M4,笔者就想利用Proteus8.9版本软件现有的STM32F401VE的固件库,对F407,F429系列芯片通过Proteus VSM Studio进行仿真实验应用。
recommend-type

[野火EmbedFire]《STM32 HAL库开发实战指南——F103系列》—20211026.pdf

[野火EmbedFire]《STM32 HAL库开发实战指南——F103系列》
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

确保MATLAB回归分析模型的可靠性:诊断与评估的全面指南

![确保MATLAB回归分析模型的可靠性:诊断与评估的全面指南](https://img-blog.csdnimg.cn/img_convert/4b823f2c5b14c1129df0b0031a02ba9b.png) # 1. 回归分析模型的基础** **1.1 回归分析的基本原理** 回归分析是一种统计建模技术,用于确定一个或多个自变量与一个因变量之间的关系。其基本原理是拟合一条曲线或超平面,以最小化因变量与自变量之间的误差平方和。 **1.2 线性回归和非线性回归** 线性回归是一种回归分析模型,其中因变量与自变量之间的关系是线性的。非线性回归模型则用于拟合因变量与自变量之间非
recommend-type

引发C++软件异常的常见原因

1. 内存错误:内存溢出、野指针、内存泄漏等; 2. 数组越界:程序访问了超出数组边界的元素; 3. 逻辑错误:程序设计错误或算法错误; 4. 文件读写错误:文件不存在或无法打开、读写权限不足等; 5. 系统调用错误:系统调用返回异常或调用参数错误; 6. 硬件故障:例如硬盘损坏、内存损坏等; 7. 网络异常:网络连接中断、网络传输中断、网络超时等; 8. 程序异常终止:例如由于未知原因导致程序崩溃等。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

打造高性能MATLAB回归分析模型:特征工程的艺术

![matlab回归分析](http://blog.fens.me/wp-content/uploads/2016/07/m01.png) # 1. 回归分析模型概述 回归分析是一种预测建模技术,用于建立自变量和因变量之间的关系。在回归模型中,因变量是我们要预测的目标变量,而自变量是影响因变量的输入变量。 回归分析模型的目的是找到一个数学方程,该方程可以准确地预测因变量的值,给定自变量的值。该方程通常表示为: ``` y = b0 + b1x1 + b2x2 + ... + bnxn ``` 其中: * y 是因变量 * x1、x2、...、xn 是自变量 * b0、b1、...、b