def sparse_rep(data, dictionary): omp = OrthogonalMatchingPursuit(n_nonzero_coefs=5) omp.fit(dictionary, data) coef = omp.coef_ return coef def anomaly_detection(data, dictionary): coef = sparse_rep(data, dictionary) residual = np.linalg.norm(data - np.dot(dictionary, coef)) return residual中稀疏表示稀疏怎么调整
时间: 2024-04-12 12:26:40 浏览: 181
torch_sparse-0.6.17-cp310-cp310-macosx_10_15_x86_64.whl.zip
在给定的代码中,稀疏表示是使用`OrthogonalMatchingPursuit`(OMP)算法实现的。OMP算法通过设置`n_nonzero_coefs`参数来控制稀疏度,即表示结果中非零系数的数量。
在`sparse_rep`函数中,`n_nonzero_coefs`参数被设置为5,这意味着稀疏表示结果将具有最多5个非零系数。
如果你想要调整稀疏度,可以通过修改`n_nonzero_coefs`参数的值来实现。较小的`n_nonzero_coefs`值会导致更稀疏的表示结果,而较大的值会产生更多的非零系数。
下面是一个示例代码,演示如何调整稀疏度:
```python
from sklearn.linear_model import OrthogonalMatchingPursuit
def sparse_rep(data, dictionary, n_nonzero_coefs):
omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs)
omp.fit(dictionary, data)
coef = omp.coef_
阅读全文