用交叉验证调整参数,以测试集AUC为评价指标,利用随机森林预测二分类任务的代码
时间: 2024-03-03 15:50:05 浏览: 111
.substring(2), 0);
if (!set.contains(newItem) && !newItems.contains(newItem)) {
newItems.add好的,以下是利用交叉验证调整参数,以测试集AUC为评价指标,利用随机(newItem);
hasNewItem = true;
}
}
}
}
set.addAll(newItems);
} while (has森林预测二分类任务的Python代码:
```python
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearnNewItem);
return set;
}
// 查找所有包含指定符号的文法规则
private List<String.model_selection import GridSearchCV
from sklearn.model_selection import cross_val_score
from sklearn.metrics import roc_auc_score
# 读入数据> rulesWithSymbol(String symbol) {
List<String> result = new ArrayList<>();
for (String rule : rules) {
if
data = pd.read_csv("data.csv")
# 将特征和标签分离
X = data.drop("label", axis= (rule.contains(symbol)) {
result.add(rule);
}
}
return result;
}
// 查找符号在1)
y = data["label"]
# 定义随机森林分类器
rfc = RandomForestClassifier(random_state=42)
#列表中的位置
private int symbolIndex(String symbol) {
for (int i = 0; i < rules.size(); i 定义需要测试的参数范围
param_grid = {
"n_estimators": [100, 200, 300],
"++) {
if (rules.get(i).startsWith(symbol + " ")) {
return i;
}
}
return -1;
max_depth": [5, 10, 15, None],
"min_samples_split": [2, 5, 10],
}
// 将 DFA 输出到文件
private void outputDFA(String filename) throws IOException {
PrintWriter writer = new PrintWriter "min_samples_leaf": [1, 2, 4],
}
# 利用GridSearchCV进行交叉验证调参
grid_search = GridSearchCV(rfc, param_grid, cv=5, scoring="roc_auc", n_jobs=-1)
grid_search.fit(new FileWriter(filename));
for (int i = 0; i < rules.size(); i++) {
writer.print("\t" + rules(X, y)
# 输出最优参数
print("Best parameters: {}".format(grid_search.best_params_))
# 利用最优参数.get(i));
}
writer.println();
for (int i = 0; i < itemSets.size(); i++) {
writer构建随机森林分类器
rfc_best = RandomForestClassifier(n_estimators=grid_search.best_params_["n_estimators"],
.print(i);
Set<Item> set = itemSets.get(i);
for (int j = 0; j < rules.size(); j max_depth=grid_search.best_params_["max_depth"],
min_samples_split=grid_search.best_params_["min_samples_split"],
min_samples_leaf=grid_search.best_params_["min_samples_leaf"],
random_state=42)
# 利用交叉验证计算++) {
if (table[i][j] >= 0) {
writer.print("\t" + table[i][j]);
AUC得分
auc_scores = cross_val_score(rfc_best, X, y, cv=5, scoring="roc_auc", n } else {
writer.print("\t-");
}
}
if (set.contains(new Item("S'", "S", _jobs=-1)
# 输出AUC得分
print("AUC scores: {}".format(auc_scores))
print("Mean AUC score1))) {
writer.print("\t1");
} else {
writer.print("\t0");
}
for (Item item: {}".format(auc_scores.mean()))
```
其中,`data.csv`是二分类任务的数据集,包含多个特 : set) {
writer.println();
writer.print("\t\t" + item);
}
writer.println();
}
writer征和标签列。首先将特征和标签分离,然后定义随机森林分类器和需要测试.close();
}
// 构造函数,读取文件并构造DFA
public LR0DFA(String inputFilename,的参数范围。接着利用GridSearchCV进行交叉验证调参,以测试集AUC为评价指标 String outputFilename) throws IOException {
initRules(inputFilename);
initItemSets();
initDFA();
outputDFA(output。最后利用最优参数构建随机森林分类器,利用交叉验证计算AUC得分,输出AUC得分和平均AUC得分。
阅读全文