def fc_layer(self, bottom, name): with tf.variable_scope(name): shape = bottom.get_shape().as_list() dim = 1 for d in shape[1:]: dim *= d x = tf.reshape(bottom, [-1, dim]) weights = self.get_fc_weight(name) biases = self.get_bias(name) # Fully connected layer. Note that the '+' operation automatically # broadcasts the biases. fc = tf.nn.bias_add(tf.matmul(x, weights), biases) return fc
时间: 2024-02-14 07:22:34 浏览: 120
Python中if __name__ == '__main__'作用解析
这段代码实现了一个全连接层(Fully Connected Layer),输入是bottom,输出是fc。其中,bottom表示输入数据,name是该层的名称,shape变量记录了bottom的形状,dim变量计算了bottom的总特征数,x变量是将bottom变形后的结果,weights变量是该层的权重参数,biases变量是该层的偏置参数,tf.nn.bias_add函数实现了加偏置的操作,最终通过tf.matmul计算得到全连接层的输出fc。
阅读全文