def fc_layer(self, bottom, name): with tf.variable_scope(name): shape = bottom.get_shape().as_list() dim = 1 for d in shape[1:]: dim *= d x = tf.reshape(bottom, [-1, dim]) weights = self.get_fc_weight(name) biases = self.get_bias(name) # Fully connected layer. Note that the '+' operation automatically # broadcasts the biases. fc = tf.nn.bias_add(tf.matmul(x, weights), biases) return fc
时间: 2024-02-14 11:22:34 浏览: 122
这段代码实现了一个全连接层(Fully Connected Layer),输入是bottom,输出是fc。其中,bottom表示输入数据,name是该层的名称,shape变量记录了bottom的形状,dim变量计算了bottom的总特征数,x变量是将bottom变形后的结果,weights变量是该层的权重参数,biases变量是该层的偏置参数,tf.nn.bias_add函数实现了加偏置的操作,最终通过tf.matmul计算得到全连接层的输出fc。
相关问题
tf.keras.layers.Layer怎么替代variable_scope
在TensorFlow 2.0中,`tf.keras.layers.Layer`已经默认使用了变量共享,无需手动使用`variable_scope`。
在TensorFlow 1.x中,可以通过以下方式实现`variable_scope`的功能:
1. 在自定义层的`__init__`方法中,使用`tf.variable_scope`创建域,并将其赋值给`self.scope`:
```python
class MyLayer(tf.keras.layers.Layer):
def __init__(self, name, **kwargs):
super(MyLayer, self).__init__(name=name, **kwargs)
self.scope = tf.variable_scope(name)
```
2. 在自定义层的`call`方法中,使用`tf.variable_scope`进入该域,并使用`tf.get_variable`创建或获取变量:
```python
class MyLayer(tf.keras.layers.Layer):
def __init__(self, name, **kwargs):
super(MyLayer, self).__init__(name=name, **kwargs)
self.scope = tf.variable_scope(name)
def call(self, inputs):
with self.scope:
weight = tf.get_variable(name='weight', shape=[inputs.shape[-1], 10], initializer=tf.random_normal_initializer())
bias = tf.get_variable(name='bias', shape=[10], initializer=tf.zeros_initializer())
output = tf.matmul(inputs, weight) + bias
return output
```
这样就实现了类似于`variable_scope`的功能。但是在TensorFlow 2.0中,不再需要手动创建域,可以直接使用`tf.get_variable`创建或获取变量。
阅读全文