keras history NoneType

时间: 2023-09-01 13:10:37 浏览: 40
这个错误通常是因为在训练模型时没有将历史记录存储在变量中。在Keras中,使用fit()方法来训练模型,并将返回一个包含训练过程中损失和指标的历史记录对象。确保在调用fit()方法时,将其存储在一个变量中,例如: ``` history = model.fit(x_train, y_train, epochs=10, validation_data=(x_val, y_val)) ``` 如果在调用fit()方法时没有将历史记录存储在变量中,则会返回NoneType错误。
相关问题

写一维胶囊网络的代码keras并训练

好的,以下是一维胶囊网络的Keras代码及其训练过程: ``` # 导入必要的库 import keras from keras import layers, models # 定义一维胶囊网络 class Capsule(layers.Layer): def __init__(self, num_capsules, dim_capsule, routings=3, **kwargs): super(Capsule, self).__init__(**kwargs) self.num_capsules = num_capsules self.dim_capsule = dim_capsule self.routings = routings def build(self, input_shape): self.input_num_capsules = input_shape[1] self.input_dim_capsule = input_shape[2] # 初始化W_ij和b_i self.W = self.add_weight(shape=[self.input_num_capsules, self.num_capsules, self.input_dim_capsule, self.dim_capsule], initializer='glorot_uniform', name='W') self.b = self.add_weight(shape=[1, self.input_num_capsules, self.num_capsules, 1, 1], initializer='zeros', name='b') super(Capsule, self).build(input_shape) def call(self, inputs, training=None): inputs_expand = keras.backend.expand_dims(inputs, 2) inputs_tiled = keras.backend.tile(inputs_expand, [1, 1, self.num_capsules, 1, 1]) inputs_hat = keras.backend.map_fn(lambda x: keras.backend.batch_dot(x, self.W, [3, 2]), elems=inputs_tiled) for i in range(self.routings): c = keras.backend.softmax(self.b, axis=2) outputs = keras.backend.batch_dot(c, inputs_hat, [2, 3]) if i != self.routings - 1: outputs = keras.backend.map_fn(lambda x: keras.backend.l2_normalize(x, axis=-1), elems=outputs) b += keras.backend.batch_dot(outputs, inputs_hat, [3, 4]) return keras.backend.reshape(outputs, [-1, self.num_capsules, self.dim_capsule]) def compute_output_shape(self, input_shape): return tuple([None, self.num_capsules, self.dim_capsule]) # 定义模型 def CapsNet(input_shape, n_class, num_capsules, dim_capsule, routings): x = layers.Input(shape=input_shape) conv1 = layers.Conv1D(filters=256, kernel_size=9, strides=1, padding='valid', activation='relu', name='conv1')(x) primary_caps = layers.Conv1D(filters=num_capsules*dim_capsule, kernel_size=9, strides=2, padding='valid', name='primary_caps')(conv1) primary_caps_reshaped = layers.Reshape(target_shape=[-1, dim_capsule], name='primary_caps_reshaped')(primary_caps) digit_caps = Capsule(num_capsules=num_capsules, dim_capsule=dim_capsule, routings=routings, name='digit_caps')(primary_caps_reshaped) out_caps = layers.Lambda(lambda x: keras.backend.sqrt(keras.backend.sum(keras.backend.square(x), 2)), name='out_caps')(digit_caps) y = layers.Input(shape=(n_class,)) masked = layers.Multiply(name='masked')([out_caps, y]) masked_out = layers.Dense(units=512, activation='relu', name='masked_out')(masked) model = models.Model(inputs=[x, y], outputs=masked_out) return model # 训练模型 def train(model, data, epoch_size_frac=1.0, epochs=1, batch_size=128): (X_train, Y_train), (X_test, Y_test) = data model.compile(optimizer=keras.optimizers.Adam(lr=0.001), loss='mse', metrics=['accuracy']) history = model.fit([X_train, Y_train], Y_train, batch_size=batch_size, epochs=epochs, validation_data=[[X_test, Y_test], Y_test]) return history ``` 以上是一维胶囊网络的Keras代码,接下来给出一个训练样例: ``` # 加载数据 (X_train, Y_train), (X_test, Y_test) = keras.datasets.mnist.load_data() # 数据预处理 X_train = X_train.astype('float32') / 255.0 X_test = X_test.astype('float32') / 255.0 Y_train = keras.utils.to_categorical(Y_train.astype('float32')) Y_test = keras.utils.to_categorical(Y_test.astype('float32')) # 定义模型参数 input_shape = (X_train.shape[1], 1) n_class = Y_train.shape[1] num_capsules = 10 dim_capsule = 16 routings = 3 # 构建模型 model = CapsNet(input_shape, n_class, num_capsules, dim_capsule, routings) # 训练模型 history = train(model=model, data=((X_train, Y_train), (X_test, Y_test)), epochs=10) # 打印训练过程中的准确率和损失 print(history.history['accuracy']) print(history.history['loss']) ``` 以上就是一维胶囊网络的Keras代码及其训练过程。

keras实现resnet对四种天气分类,并绘制图像

好的,我可以为您提供大致的代码实现,但由于我无法进行代码编写和图像绘制,因此以下代码仅供参考。 首先,需要导入必要的库和模块: ```python import numpy as np import matplotlib.pyplot as plt import keras from keras.models import Model from keras.layers import Input, Conv2D, BatchNormalization, Activation, MaxPooling2D, Dense, Flatten, Add from keras.utils import np_utils from keras.datasets import weather_classification ``` 然后,读取和预处理数据集: ```python (x_train, y_train), (x_test, y_test) = weather_classification.load_data() # 将像素值缩放到0-1之间 x_train = x_train.astype('float32') / 255. x_test = x_test.astype('float32') / 255. # 将标签进行One-Hot编码 y_train = np_utils.to_categorical(y_train, 4) y_test = np_utils.to_categorical(y_test, 4) ``` 接下来,定义ResNet网络: ```python def Conv2d_BN(x, nb_filter, kernel_size, strides=(1,1), padding='same', name=None): if name is not None: bn_name = name + '_bn' conv_name = name + '_conv' else: bn_name = None conv_name = None x = Conv2D(nb_filter, kernel_size, padding=padding, strides=strides, activation='relu', name=conv_name)(x) x = BatchNormalization(axis=3, name=bn_name)(x) return x def identity_block(input_tensor, nb_filter, kernel_size, name=None): if name is not None: conv_name_base = name + '_branch' else: conv_name_base = None x = Conv2d_BN(input_tensor, nb_filter=nb_filter, kernel_size=kernel_size, name=conv_name_base + '2a') x = Conv2d_BN(x, nb_filter=nb_filter, kernel_size=kernel_size, name=conv_name_base + '2b') x = Add()([x, input_tensor]) x = Activation('relu')(x) return x def conv_block(input_tensor, nb_filter, kernel_size, strides=(2, 2), name=None): if name is not None: conv_name_base = name + '_branch' else: conv_name_base = None x = Conv2d_BN(input_tensor, nb_filter=nb_filter, kernel_size=kernel_size, strides=strides, name=conv_name_base + '2a') x = Conv2d_BN(x, nb_filter=nb_filter, kernel_size=kernel_size, name=conv_name_base + '2b') shortcut = Conv2d_BN(input_tensor, nb_filter=nb_filter, kernel_size=1, strides=strides, name=conv_name_base + '1') x = Add()([x, shortcut]) x = Activation('relu')(x) return x def ResNet(input_shape, nb_classes): input_tensor = Input(shape=input_shape) x = Conv2d_BN(input_tensor, nb_filter=64, kernel_size=(7, 7), strides=(2, 2), padding='same', name='conv1') x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='same')(x) x = conv_block(x, nb_filter=64, kernel_size=(3, 3), strides=(1, 1), name='conv2_1') x = identity_block(x, nb_filter=64, kernel_size=(3, 3), name='conv2_2') x = identity_block(x, nb_filter=64, kernel_size=(3, 3), name='conv2_3') x = conv_block(x, nb_filter=128, kernel_size=(3, 3), name='conv3_1') x = identity_block(x, nb_filter=128, kernel_size=(3, 3), name='conv3_2') x = identity_block(x, nb_filter=128, kernel_size=(3, 3), name='conv3_3') x = identity_block(x, nb_filter=128, kernel_size=(3, 3), name='conv3_4') x = conv_block(x, nb_filter=256, kernel_size=(3, 3), name='conv4_1') x = identity_block(x, nb_filter=256, kernel_size=(3, 3), name='conv4_2') x = identity_block(x, nb_filter=256, kernel_size=(3, 3), name='conv4_3') x = identity_block(x, nb_filter=256, kernel_size=(3, 3), name='conv4_4') x = identity_block(x, nb_filter=256, kernel_size=(3, 3), name='conv4_5') x = identity_block(x, nb_filter=256, kernel_size=(3, 3), name='conv4_6') x = conv_block(x, nb_filter=512, kernel_size=(3, 3), name='conv5_1') x = identity_block(x, nb_filter=512, kernel_size=(3, 3), name='conv5_2') x = identity_block(x, nb_filter=512, kernel_size=(3, 3), name='conv5_3') x = Flatten()(x) x = Dense(nb_classes, activation='softmax', name='fc')(x) model = Model(input_tensor, x) return model ``` 然后,编译和训练网络: ```python model = ResNet(input_shape=(64, 64, 3), nb_classes=4) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.summary() history = model.fit(x_train, y_train, batch_size=64, epochs=20, validation_data=(x_test, y_test)) ``` 最后,评估和测试网络,并绘制图像: ```python # 评估网络 score = model.evaluate(x_test, y_test, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1]) # 绘制训练和测试曲线 plt.figure(figsize=(10, 4)) plt.subplot(1, 2, 1) plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('Model accuracy') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper left') plt.subplot(1, 2, 2) plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('Model loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper left') plt.show() # 绘制混淆矩阵 from sklearn.metrics import confusion_matrix import itertools def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print('Normalized confusion matrix') else: print('Confusion matrix, without normalization') print(cm) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') y_pred = model.predict(x_test) y_pred_classes = np.argmax(y_pred, axis=1) y_true = np.argmax(y_test, axis=1) confusion_mtx = confusion_matrix(y_true, y_pred_classes) plot_confusion_matrix(confusion_mtx, classes=['sunny', 'cloudy', 'rainy', 'snowy']) ``` 希望以上代码能够帮助您完成ResNet网络对四种天气的分类任务,并绘制相应的图像。

相关推荐

最新推荐

recommend-type

QT5开发及实例配套源代码.zip

QT5开发及实例配套[源代码],Qt是诺基亚公司的C++可视化开发平台,本书以Qt 5作为平台,每个章节在简单介绍开发环境的基础上,用一个小实例,介绍Qt 5应用程序开发各个方面,然后系统介绍Qt 5应用程序的开发技术,一般均通过实例介绍和讲解内容。最后通过三个大实例,系统介绍Qt 5综合应用开发。光盘中包含本书教学课件和书中所有实例源代码及其相关文件。通过学习本书,结合实例上机练习,一般能够在比较短的时间内掌握Qt 5应用技术。本书既可作为Qt 5的学习和参考用书,也可作为大学教材或Qt 5培训用书。
recommend-type

grpcio-1.46.3-cp37-cp37m-musllinux_1_1_i686.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

大学生毕业答辨ppt免费模板【不要积分】下载可编辑可用(138).zip

大学生毕业答辨ppt免费模板【不要积分】下载可编辑可用(138).zip
recommend-type

Eclipse的C/C++自动补全插件org.eclipse.cdt.ui-7.3.100.202111091601

Eclipse的C/C++自动补全插件,制作参考:https://blog.csdn.net/kingfox/article/details/104121203?spm=1001.2101.3001.6650.1&utm_medium=distribute.pc_relevant.none-task-blog-2~default~BlogCommendFromBaidu~Rate-1-104121203-blog-117118786.235%5Ev43%5Epc_blog_bottom_relevance_base1&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2~default~BlogCommendFromBaidu~Rate-1-104121203-blog-117118786.235%5Ev43%5Epc_blog_bottom_relevance_base1&utm_relevant_index=2
recommend-type

大学生毕业答辨ppt免费模板【不要积分】下载可编辑可用(137).zip

大学生毕业答辨ppt免费模板【不要积分】下载可编辑可用(137).zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。