写用pytorch框架的minist手写体识别代码
时间: 2024-01-21 22:18:44 浏览: 78
好的,以下是用PyTorch框架实现手写数字识别的代码:
```
import torch
import torchvision
import torchvision.transforms as transforms
# 定义数据预处理方法
transform = transforms.Compose(
[transforms.ToTensor(), # 转换为Tensor
transforms.Normalize((0.5,), (0.5,))]) # 归一化处理
# 加载训练集数据
trainset = torchvision.datasets.MNIST(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)
# 加载测试集数据
testset = torchvision.datasets.MNIST(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)
# 定义神经网络结构
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 6, 5)
self.pool = torch.nn.MaxPool2d(2, 2)
self.conv2 = torch.nn.Conv2d(6, 16, 5)
self.fc1 = torch.nn.Linear(16 * 4 * 4, 120)
self.fc2 = torch.nn.Linear(120, 84)
self.fc3 = torch.nn.Linear(84, 10)
def forward(self, x):
x = self.pool(torch.nn.functional.relu(self.conv1(x)))
x = self.pool(torch.nn.functional.relu(self.conv2(x)))
x = x.view(-1, 16 * 4 * 4)
x = torch.nn.functional.relu(self.fc1(x))
x = torch.nn.functional.relu(self.fc2(x))
x = self.fc3(x)
return x
# 实例化神经网络
net = Net()
# 定义损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# 训练神经网络
for epoch in range(2): # 多批次循环
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# 获取输入数据和标签
inputs, labels = data
# 梯度清零
optimizer.zero_grad()
# 前向传播、反向传播、优化
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 打印统计信息
running_loss += loss.item()
if i % 2000 == 1999: # 每 2000 批次打印一次信息
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
# 测试神经网络
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
```
注释详细,相信你可以看懂每一行代码的作用。
阅读全文