minst机器学习pytorch
时间: 2023-09-06 20:13:29 浏览: 102
Minst是一个手写数字识别数据集,包含60000张训练图片和10000张测试图片。PyTorch是一个基于Python的机器学习框架,它可以帮助我们快速构建、训练和测试深度神经网络。
以下是使用PyTorch进行Minst手写数字识别的步骤:
1. 导入必要的库
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms
```
2. 加载数据集
```python
train_dataset = datasets.MNIST(root='data/', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = datasets.MNIST(root='data/', train=False, transform=transforms.ToTensor(), download=True)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=64, shuffle=False)
```
3. 定义模型
```python
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = nn.functional.relu(nn.functional.max_pool2d(self.conv1(x), 2))
x = nn.functional.relu(nn.functional.max_pool2d(self.conv2(x), 2))
x = x.view(-1, 320)
x = nn.functional.relu(self.fc1(x))
x = self.fc2(x)
return nn.functional.log_softmax(x, dim=1)
model = Net()
```
4. 定义损失函数和优化器
```python
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
```
5. 训练模型
```python
for epoch in range(10):
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
```
6. 测试模型
```python
correct = 0
total = 0
with torch.no_grad():
for data, target in test_loader:
output = model(data)
_, predicted = torch.max(output.data, 1)
total += target.size(0)
correct += (predicted == target).sum().item()
print('Accuracy of the model on the test images: {}%'.format(100 * correct / total))
```
通过以上步骤,我们可以使用PyTorch构建一个简单的卷积神经网络进行Minst手写数字识别。
阅读全文