unet模型中怎么添加注意力机制
时间: 2023-06-25 13:07:28 浏览: 499
在U-Net模型中,可以通过在编码器和解码器之间添加注意力机制来提高模型的性能。这种注意力机制被称为SE-Net(Squeeze-and-Excitation Networks),它可以通过自适应地调整特征图的通道权重来提高模型的性能。
具体来说,可以在U-Net的解码器中添加SE-Net模块,如下所示:
```
class SEBlock(nn.Module):
def __init__(self, channel, reduction=16):
super(SEBlock, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction, bias=False),
nn.ReLU(inplace=True),
nn.Linear(channel // reduction, channel, bias=False),
nn.Sigmoid()
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y.expand_as(x)
class UNet(nn.Module):
def __init__(self):
super(UNet, self).__init__()
# encoder
self.conv1_1 = nn.Conv2d(3, 64, 3, padding=1)
self.conv1_2 = nn.Conv2d(64, 64, 3, padding=1)
self.conv2_1 = nn.Conv2d(64, 128, 3, padding=1)
self.conv2_2 = nn.Conv2d(128, 128, 3, padding=1)
self.conv3_1 = nn.Conv2d(128, 256, 3, padding=1)
self.conv3_2 = nn.Conv2d(256, 256, 3, padding=1)
self.conv4_1 = nn.Conv2d(256, 512, 3, padding=1)
self.conv4_2 = nn.Conv2d(512, 512, 3, padding=1)
# decoder
self.upconv3 = nn.ConvTranspose2d(512, 256, 2, stride=2)
self.conv3_3 = nn.Conv2d(512, 256, 3, padding=1)
self.upconv2 = nn.ConvTranspose2d(256, 128, 2, stride=2)
self.conv2_3 = nn.Conv2d(256, 128, 3, padding=1)
self.upconv1 = nn.ConvTranspose2d(128, 64, 2, stride=2)
self.conv1_3 = nn.Conv2d(128, 64, 3, padding=1)
self.conv_out = nn.Conv2d(64, 1, 1)
# attention
self.att3 = SEBlock(256)
self.att2 = SEBlock(128)
self.att1 = SEBlock(64)
def forward(self, x):
# encoder
x1 = F.relu(self.conv1_1(x))
x1 = F.relu(self.conv1_2(x1))
x2 = F.max_pool2d(x1, 2)
x2 = F.relu(self.conv2_1(x2))
x2 = F.relu(self.conv2_2(x2))
x3 = F.max_pool2d(x2, 2)
x3 = F.relu(self.conv3_1(x3))
x3 = self.att3(F.relu(self.conv3_2(x3)))
x4 = F.max_pool2d(x3, 2)
x4 = F.relu(self.conv4_1(x4))
x4 = F.relu(self.conv4_2(x4))
# decoder
x = F.relu(self.upconv3(x4))
x = torch.cat([x3, x], dim=1)
x = self.att2(F.relu(self.conv3_3(x)))
x = F.relu(self.upconv2(x))
x = torch.cat([x2, x], dim=1)
x = self.att1(F.relu(self.conv2_3(x)))
x = F.relu(self.upconv1(x))
x = torch.cat([x1, x], dim=1)
x = F.relu(self.conv1_3(x))
x = self.conv_out(x)
return x
```
在这里,我们定义了一个SEBlock类,用于实现SE-Net中的注意力机制。然后,在UNet类中,我们在解码器中的每个阶段都添加了一个SEBlock模块,以提高特征图的表示能力。
阅读全文