import torch from transformers import BertTokenizer, BertForQuestionAnswering # 加载BERT预训练模型和分词器 model_name ='bert-large-uncased-whole-word-masking-finetuned-squad' tokenizer = BertTokenizer.from_pretrained(model_name) model = BertForQuestionAnswering.from_pretrained(model_name) # 输入文本和问题 context = "我叫river,我在深圳上班。" question = "我是谁?" # 对文本和问题进行分词和编码 inputs = tokenizer.encode_plus(question, context, add_special_tokens=True, return_tensors='pt') input_ids = inputs['input_ids'].tolist()[0] token_type_ids = inputs['token_type_ids'].tolist()[0] input_ids = torch.tensor([input_ids], dtype=torch.long) token_type_ids = torch.tensor([token_type_ids], dtype=torch.long) # 使用BERT模型进行问答 start_scores, end_scores = model(input_ids=input_ids, token_type_ids=token_type_ids) print(input_ids.size(), token_type_ids.size()) print(input_ids.dtype) # 获取最佳答案的起始和结束位置 print('startscores is:', type(start_scores), start_scores)
时间: 2024-04-19 15:28:05 浏览: 175
huggingface的bert-base-uncased
根据您提供的代码,`start_scores` 应该是一个张量类型的对象。在代码中,我注意到您已经打印了 `input_ids.dtype`,并且输出显示为 `torch.int64`,这表明 `input_ids` 是一个整数张量。
根据这个信息,我可以确定 `start_scores` 的类型也应该是张量。请注意,打印张量的类型不应该是字符串形式的,因此如果您的输出结果显示为字符串类型,可能是由于其他地方发生了错误。
为了更好地理解问题,我建议您检查以下几点:
1. 确保在运行代码之前已经正确安装了 `transformers` 库。您可以通过运行 `pip install transformers` 来安装。
2. 确保您的 PyTorch 版本与 transformers 库兼容。建议使用最新版本的 PyTorch 和 transformers。
3. 检查是否存在其他代码或操作会修改 `start_scores` 的类型。
如果问题仍然存在,请提供完整的错误信息和相关的代码细节,以便我能够更好地帮助您解决问题。
阅读全文