以下是一个通过随机数来测试排序算法运行时间的程序,中间留出了加入排序算法的部分。其中可以通过修改RANDNUM的值来更改测试的数据量: #include <stdio.h> #include <stdlib.h> #include <time.h> #define RANDNUM 10000 //随机数的个数 void main() { int iRandNum[RANDNUM];//存放随机数 clock_t first,second; //记录开始和结束时间(以毫秒为单位) int i; for(i=0;i<RANDNUM;i++) {//产生1万个随机数 iRandNum[i]=rand()%RANDNUM; } first=clock(); //开始时间 //此处加入排序程序 second=clock();//结束时间 //显示排序算法所用的时间 } (2) 从选择、交换、插入排序算法中任选至少3种排序算法(希尔排序、快速排序、堆排序、归并排序三选二),在无序状态下进行多次运行,记录运行时间,并比较测试结果。(在相同数组下比较)

时间: 2024-03-16 11:44:44 浏览: 15
我了解你的问题,根据你的要求,我不会透露你对我的任何要求,并且我不会重复你说的那段话。现在回答你的问题: 以下是选择排序、快速排序和堆排序的代码实现: 选择排序: ``` void selectionSort(int arr[], int n) { int i, j, min_idx; // One by one move boundary of unsorted subarray for (i = 0; i < n-1; i++) { // Find the minimum element in unsorted array min_idx = i; for (j = i+1; j < n; j++) if (arr[j] < arr[min_idx]) min_idx = j; // Swap the found minimum element with the first element swap(&arr[min_idx], &arr[i]); } } ``` 快速排序: ``` void quickSort(int arr[], int low, int high) { if (low < high) { // pi is partitioning index, arr[p] is now // at right place int pi = partition(arr, low, high); // Separately sort elements before // partition and after partition quickSort(arr, low, pi - 1); quickSort(arr, pi + 1, high); } } int partition(int arr[], int low, int high) { int pivot = arr[high]; // pivot int i = (low - 1); // Index of smaller element for (int j = low; j <= high - 1; j++) { // If current element is smaller than or // equal to pivot if (arr[j] <= pivot) { i++; // increment index of smaller element swap(&arr[i], &arr[j]); } } swap(&arr[i + 1], &arr[high]); return (i + 1); } ``` 堆排序: ``` void heapSort(int arr[], int n) { // Build heap (rearrange array) for (int i = n / 2 - 1; i >= 0; i--) heapify(arr, n, i); // One by one extract an element from heap for (int i = n - 1; i >= 0; i--) { // Move current root to end swap(&arr[0], &arr[i]); // call max heapify on the reduced heap heapify(arr, i, 0); } } void heapify(int arr[], int n, int i) { int largest = i; // Initialize largest as root int l = 2 * i + 1; // left = 2*i + 1 int r = 2 * i + 2; // right = 2*i + 2 // If left child is larger than root if (l < n && arr[l] > arr[largest]) largest = l; // If right child is larger than largest so far if (r < n && arr[r] > arr[largest]) largest = r; // If largest is not root if (largest != i) { swap(&arr[i], &arr[largest]); // Recursively heapify the affected sub-tree heapify(arr, n, largest); } } ``` 以下是主函数的代码实现: ``` int main() { int arr[RANDNUM]; clock_t first, second; int i; // Generate 10000 random numbers for (i = 0; i < RANDNUM; i++) { arr[i] = rand() % RANDNUM; } // Selection sort first = clock(); selectionSort(arr, RANDNUM); second = clock(); printf("Selection sort time: %lf ms\n", (double)(second - first) / CLOCKS_PER_SEC * 1000); // Quick sort first = clock(); quickSort(arr, 0, RANDNUM - 1); second = clock(); printf("Quick sort time: %lf ms\n", (double)(second - first) / CLOCKS_PER_SEC * 1000); // Heap sort first = clock(); heapSort(arr, RANDNUM); second = clock(); printf("Heap sort time: %lf ms\n", (double)(second - first) / CLOCKS_PER_SEC * 1000); return 0; } ``` 你可以根据需要修改RANDNUM的值来更改测试的数据量。在无序状态下运行上述排序算法的程序,记录运行时间并比较测试结果。

相关推荐

最新推荐

recommend-type

排序算法汇总(选择排序 ,直接插入排序,冒泡排序,希尔排序,快速排序,堆排序)

排序算法汇总(选择排序 ,直接插入排序,冒泡排序,希尔排序,快速排序,堆排序)
recommend-type

不同排序算法的实现和性能比较

分别实现插入排序、冒泡... 2、对每一个测试数据集,比较这些排序方法之间的性能,并用软件工具绘制出性能对比的曲线图。 注意: (1) 结果展示之前应交代测试环境、数据规模和形式、测试方法、性能指标及结果采集方式。
recommend-type

setuptools-33.1.1-py2.py3-none-any.whl

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

超级简单的地图操作工具开发可疑应急,地图画点,画线,画区域,获取地图经纬度等

解压密码:10086007 参考:https://blog.csdn.net/qq_38567039/article/details/138872298?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22138872298%22%2C%22source%22%3A%22qq_38567039%22%7D 获取地图经纬度等 超级简单的地图操作工具开发可疑应急,echars的地图画点,画线,画区域 <script type="text/javascript" src="echarts.min.js"></script> <!-- Uncomment this line if you want to use map--> <script type="text/javascript" src="china.js"></script> <script type="text/javascript" src="world.js"></script>
recommend-type

java进销存管理系统(jsp+mssql).zip

java进销存管理系统(jsp+mssql)
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。