struct sensor_event { int64_t time_stamp; int8_t handle; int8_t flush_action; int8_t status; int8_t reserved; union { int32_t word[6]; int8_t byte[0]; }; };含义

时间: 2024-03-29 10:36:51 浏览: 21
这是一个 C 语言的结构体定义,结构体名为 `sensor_event`,包含以下成员: - `time_stamp`:一个 64 位整数,表示传感器事件的时间戳; - `handle`:一个 8 位整数,表示传感器的句柄; - `flush_action`:一个 8 位整数,表示传感器数据的刷新动作; - `status`:一个 8 位整数,表示传感器的状态; - `reserved`:一个 8 位整数,保留字段; - `union`:一个联合体,包括两个成员: - `word`:一个包含 6 个 32 位整数的数组; - `byte`:一个不定长的字节数组,长度由结构体的实际大小决定。 这个结构体的具体含义需要根据具体的应用场景进行解释。
相关问题

FFmpeg int8_t*转 AVFrame 数据是yuv420完整代码

### 回答1: 以下是将 `int8_t*` 数据转换为 `AVFrame`(YUV420 格式)的完整代码示例。这里假设输入的数据是 `input_data`,其大小为 `input_size`,并且已经从文件或其他来源读取。 ``` #include <stdio.h> #include <stdlib.h> #include <string.h> #include <stdint.h> extern "C" { #include <libavcodec/avcodec.h> #include <libavutil/imgutils.h> } int main(int argc, char *argv[]) { AVCodec *codec; AVCodecContext *codec_ctx; AVFrame *frame; int ret, got_output; int width = 640; int height = 480; // Allocate input buffer and copy input data int8_t *input_data; int input_size = width * height * 3 / 2; input_data = (int8_t*) malloc(input_size); memcpy(input_data, <input data>, input_size); // Initialize codec and codec context codec = avcodec_find_decoder(AV_CODEC_ID_H264); if (!codec) { fprintf(stderr, "Codec not found\n"); exit(1); } codec_ctx = avcodec_alloc_context3(codec); if (!codec_ctx) { fprintf(stderr, "Could not allocate codec context\n"); exit(1); } if (avcodec_open2(codec_ctx, codec, NULL) < 0) { fprintf(stderr, "Could not open codec\n"); exit(1); } // Allocate frame and initialize its properties frame = av_frame_alloc(); if (!frame) { fprintf(stderr, "Could not allocate video frame\n"); exit(1); } frame->format = AV_PIX_FMT_YUV420P; frame->width = width; frame->height = height; ret = av_frame_get_buffer(frame, 32); if (ret < 0) { fprintf(stderr, "Could not allocate the video frame data\n"); exit(1); } // Decode input data and populate frame AVPacket pkt = { 0 }; av_init_packet(&pkt); pkt.data = input_data; pkt.size = input_size; ret = avcodec_decode_video2(codec_ctx, frame, &got_output, &pkt); if (ret < 0) { fprintf(stderr, "Error decoding video: %s\n", av_err2str(ret)); exit(1); } if (!got_output) { fprintf(stderr, "No frame decoded\n"); exit(1); } // Clean up av_packet_unref(&pkt); avcodec_close(codec_ctx); avcodec_free_context(&codec_ctx); av_frame_free(&frame); free(input_data); return 0; } ``` 在上面的代码中,我们首先分配了一个大小为 `input_size` 的输入缓冲区,并使用 `memcpy` 将输入数据复制到该缓冲区中。接下来,我们通过 `avcodec_find_decoder` 函数查找 H.264 解码器,并使用 `avcodec_alloc_context3` 和 `avcodec_open2` 函数初始化解码器上下文。然后,我们分配一个 AVFrame 结构体,并使用 `av_frame_get_buffer` 函数分配 YUV420P 格式的视频帧数据缓冲区。接着,我们使用 `avcodec_decode_video2 ### 回答2: 下面是一个用于将int8_t*(指向YUV420数据)转换为AVFrame(包含YUV420数据)的完整代码示例: ```c++ #include <iostream> #include <cstdint> extern "C" { #include <libavutil/frame.h> } AVFrame* int8_to_avframe(int8_t* data, int width, int height) { AVFrame* frame = av_frame_alloc(); if (!frame) { std::cout << "无法分配AVFrame" << std::endl; return nullptr; } frame->width = width; frame->height = height; frame->format = AV_PIX_FMT_YUV420P; int buffer_size = av_image_get_buffer_size(AV_PIX_FMT_YUV420P, width, height, 1); uint8_t* buffer = (uint8_t*)av_malloc(buffer_size); av_image_fill_arrays(frame->data, frame->linesize, buffer, AV_PIX_FMT_YUV420P, width, height, 1); int y_size = width * height; int u_size = y_size / 4; int v_size = y_size / 4; // 将int8_t*数据拷贝到AVFrame中的Y、U、V平面 memcpy(frame->data[0], data, y_size); memcpy(frame->data[1], data + y_size, u_size); memcpy(frame->data[2], data + y_size + u_size, v_size); return frame; } int main() { int8_t* data = new int8_t[width * height * 3 / 2]; // 假设data包含完整的YUV420数据 AVFrame* frame = int8_to_avframe(data, width, height); if (!frame) { std::cout << "无法转换int8_t*到AVFrame" << std::endl; } else { std::cout << "成功将int8_t*转换为AVFrame" << std::endl; } delete[] data; av_frame_free(&frame); return 0; } ``` 上述代码通过调用int8_to_avframe函数将int8_t*数据转换为AVFrame,并在main函数中进行了简单的测试。函数的实现包括以下步骤: 1. 分配AVFrame对象。 2. 设置AVFrame的width、height和format属性。 3. 使用av_malloc分配足够的内存以容纳YUV420数据,并将其填充到AVFrame的data和linesize数组中。 4. 计算Y、U、V平面的大小。 5. 将int8_t*数据按平面拷贝到AVFrame中。 6. 返回转换后的AVFrame对象。 请注意,本示例中的代码仅涵盖了转换过程,并假设data是包含完整的YUV420数据的int8_t*指针。在实际应用中,你可能需要根据自己的需求进行适当的修改和错误处理。 ### 回答3: 下面是一个将int8_t*数据转换为AVFrame的完整代码示例: ```c++ #include <iostream> #include <fstream> #include <string> #include <stdint.h> #include <stdlib.h> extern "C" { #include <libavformat/avformat.h> #include <libavcodec/avcodec.h> #include <libswscale/swscale.h> } int main() { // 需要转换的int8_t*数据 int8_t* inputData = new int8_t[1920 * 1080 * 3 / 2]; // 创建一个AVFrame结构 AVFrame* frame = av_frame_alloc(); if (!frame) { std::cerr << "无法分配AVFrame" << std::endl; return -1; } // 设置AVFrame的格式和尺寸 frame->format = AV_PIX_FMT_YUV420P; frame->width = 1920; frame->height = 1080; // 分配AVFrame的空间 int ret = av_frame_get_buffer(frame, 32); if (ret < 0) { std::cerr << "无法为AVFrame分配空间" << std::endl; av_frame_free(&frame); return -1; } // 将int8_t*数据复制到AVFrame中 AVPicture pict; avpicture_fill(&pict, inputData, AV_PIX_FMT_YUV420P, 1920, 1080); struct SwsContext* ctx = sws_getContext(1920, 1080, AV_PIX_FMT_YUV420P, 1920, 1080, AV_PIX_FMT_YUV420P, SWS_BILINEAR, NULL, NULL, NULL); sws_scale(ctx, pict.data, pict.linesize, 0, 1080, frame->data, frame->linesize); sws_freeContext(ctx); // 清理内存 delete[] inputData; // 打印转换后AVFrame的属性 std::cout << "转换后的AVFrame属性:" << std::endl; std::cout << "格式:" << av_get_pix_fmt_name((AVPixelFormat)frame->format) << std::endl; std::cout << "宽度:" << frame->width << std::endl; std::cout << "高度:" << frame->height << std::endl; std::cout << "数据大小:" << av_image_get_buffer_size((AVPixelFormat)frame->format, frame->width, frame->height, 1) << std::endl; // 释放AVFrame av_frame_free(&frame); return 0; } ``` 这个代码片段创建了一个AVFrame,设置其格式为YUV420P,尺寸为1920x1080,并分配了足够的空间。然后,使用`sws_getContext()`和`sws_scale()`函数将int8_t*数据复制到AVFrame中。最后,打印了转换后AVFrame的属性并释放了内存。 请注意,此示例仅用于演示目的,可能需要根据实际需求进行修改。还需要包含适当的头文件和链接适当的库文件。

int epoll_wait(int epfd, struct epoll_event *events, int maxevents , int timeout);

函数原型`int epoll_wait(int epfd, struct epoll_event *events, int maxevents, int timeout)`用于等待事件的发生。 参数说明: - `epfd`:epoll实例的文件描述符,即通过`epoll_create`函数创建的返回值。 - `events`:指向`struct epoll_event`结构体数组的指针,用于存储发生事件的文件描述符及其事件信息。 - `maxevents`:`events` 数组的大小,表示最多能够存储的事件数量。 - `timeout`:等待事件发生的超时时间,以毫秒为单位。可以有以下几种取值: - `-1`:永久阻塞,直到有事件发生。 - `0`:非阻塞,立即返回。 - 大于 `0`:等待指定的时间后返回。 函数返回值: - 成功时,返回发生事件的文件描述符数量。 - 失败时,返回-1,并设置相应的错误码。 使用`epoll_wait`函数,我们可以在一个或多个文件描述符上等待事件的发生。 当有事件发生时,`epoll_wait`函数将会填充`events`数组中的结构体,并返回发生事件的文件描述符数量。我们可以遍历这些结构体来获取每个文件描述符的事件信息。 需要注意的是,`maxevents` 参数限制了一次等待操作中能够返回的最大事件数量。如果有更多的事件发生,后续的等待操作仍然可以获取到这些事件。 另外,`timeout` 参数控制了等待事件发生的超时时间。如果设置为阻塞模式(`timeout` 参数为`-1`),`epoll_wait`函数将一直阻塞,直到有事件发生;如果设置为非阻塞模式(`timeout` 参数为`0`),`epoll_wait`函数立即返回,无论是否有事件发生;如果设置为指定的时间(`timeout` 参数大于`0`),`epoll_wait`函数将等待指定的时间后返回,如果超时仍然没有事件发生,则返回0。

相关推荐

最新推荐

recommend-type

time_t tm timeval 和 时间字符串的转换方法

在编程中,处理时间是常见的任务之一,而`time_t`、`tm`以及`timeval`是C/C++中处理时间的关键数据类型。本文将详细介绍这些类型以及它们之间的转换方法。 1. 时间存储方式: - `time_t` 类型:这是一个长整数...
recommend-type

详细解析命令行的getopt_long()函数

int getopt_long(int argc, char * const argv[], const char *optstring, const struct option *longopts, int *longindex); ``` - `argc`: 命令行参数的计数,通常从 `main()` 函数的 `argc` 参数传递。 - `argv`...
recommend-type

socket_recv函数使用心得.

* SO_RCVTIMEO:设置套接字的超时时间,见结构体 struct timeval。 * SO_BINDTODEVICE:将套接字绑定到特定的网络接口,如 eth0。 * SO_DEBUG:只能对 TCP 套接字使用,设置该选项后系统将保存TCP 发送和接收的所有...
recommend-type

FFmpeg编译出错undefined reference to `img_convert’的解决方法

sws_scale(img_convert_ctx, (const uint8_t* const*)pFrame-&gt;data, pFrame-&gt;linesize, 0, pCodecCtx-&gt;height, pFrameRGB-&gt;data, pFrameRGB-&gt;linesize); ``` 经过修改后,编译正常,测试后程序可用。 此外,...
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依