使用普中51实验板,编写程序,实现按下独立按键K1数码管显示数值加1,按下独立按键K2数码管显示数值减1,最高显示数值可达99999,要考虑到消除抖动和延时

时间: 2023-12-23 19:03:35 浏览: 43
好的,以下是一个使用普中51实验板,按下独立按键K1数码管显示数值加1,按下独立按键K2数码管显示数值减1的程序,最高显示数值可达99999,且考虑了消除抖动和延时的问题。 ```c #include <reg51.h> #define uchar unsigned char #define uint unsigned int sbit K1 = P3^2; // 定义K1按键 sbit K2 = P3^3; // 定义K2按键 sbit LED_COM = P2^6; // 定义数码管COM口 sbit LED_A = P2^0; // 定义数码管A口 sbit LED_B = P2^1; // 定义数码管B口 sbit LED_C = P2^2; // 定义数码管C口 sbit LED_D = P2^3; // 定义数码管D口 sbit LED_E = P2^4; // 定义数码管E口 sbit LED_F = P2^5; // 定义数码管F口 sbit LED_G = P2^7; // 定义数码管G口 uchar number[6] = {0}; // 数码管显示数组 uint count = 0; // 数码管计数器,初始值为0 void delay(uint i) // 延时函数 { while(i--); } void display(uchar num) // 数码管显示函数 { switch(num) { case 0: LED_A = LED_B = LED_C = LED_D = LED_E = LED_F = 1; LED_G = 0; break; case 1: LED_B = LED_C = 1; LED_A = LED_D = LED_E = LED_F = LED_G = 0; break; case 2: LED_A = LED_B = LED_D = LED_E = LED_G = 1; LED_C = LED_F = 0; break; case 3: LED_A = LED_B = LED_C = LED_D = LED_G = 1; LED_E = LED_F = 0; break; case 4: LED_B = LED_C = LED_F = LED_G = 1; LED_A = LED_D = LED_E = 0; break; case 5: LED_A = LED_C = LED_D = LED_F = LED_G = 1; LED_B = LED_E = 0; break; case 6: LED_A = LED_C = LED_D = LED_E = LED_F = LED_G = 1; LED_B = 0; break; case 7: LED_A = LED_B = LED_C = 1; LED_D = LED_E = LED_F = LED_G = 0; break; case 8: LED_A = LED_B = LED_C = LED_D = LED_E = LED_F = LED_G = 1; break; case 9: LED_A = LED_B = LED_C = LED_D = LED_F = LED_G = 1; LED_E = 0; break; default: LED_A = LED_B = LED_C = LED_D = LED_E = LED_F = LED_G = 0; break; } } void main() { while(1) { if(K1 == 0) // 检测K1按键是否按下 { delay(1000); // 延时去抖 if(K1 == 0) // 再次检测K1按键是否按下 { count++; // 计数器加1 if(count > 99999) count = 0; // 如果计数器超过99999则归零 } } if(K2 == 0) // 检测K2按键是否按下 { delay(1000); // 延时去抖 if(K2 == 0) // 再次检测K2按键是否按下 { count--; // 计数器减1 if(count < 0) count = 99999; // 如果计数器小于0则等于99999 } } // 将计数器的值转换为数码管显示数组 number[0] = count / 10000; number[1] = count % 10000 / 1000; number[2] = count % 1000 / 100; number[3] = count % 100 / 10; number[4] = count % 10; // 依次显示数码管上的数字 for(uchar i = 0; i < 6; i++) { LED_COM = 1 << i; // 选择COM口 display(number[i]); // 显示数字 delay(100); // 延时一段时间 LED_COM = 0; // 关闭COM口 display(10); // 关闭数码管 } } } ``` 程序中使用了一个计数器变量 `count` 来存储当前数码管上显示的数字,每次按下K1按键计数器加1,每次按下K2按键计数器减1,然后将计数器的值转换为数码管显示数组 `number`,并依次显示数码管上的数字。在程序中使用了延时函数,这是为了去除按键抖动产生的误触发,以及控制数码管的扫描速度。在实际应用中,可以根据具体情况调整延时时间。

相关推荐

最新推荐

recommend-type

PLC实现LED数码管动态扫描数据显示

程序使用SEGIN、OUT指令控制LED数码管显示,实现了高效、低成本的数据显示。 硬件设计部分,文章介绍了一个简单的硬件电路实现,包括一个起动按钮SB1、一个停止按钮SB2、两个数码管的a、b、c、d、e、f、g段分别连在...
recommend-type

单片机控制74HC595动态扫描数码管显示

74HC595是具有8位移位寄存器和一个存储器,三态输出功能。移位寄存器和存储器是分别的时钟。数据在SCK的上升沿输入,在RCK的上升沿进入的存储寄存器中去。如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个...
recommend-type

基于FPGA的数字时钟数码管显示

这是两年前开始学习FPGA的时候做的实验,已经好久没有接触FPGA了,板卡也积灰不少了,是时候安排时间重新拾起曾经美好的回忆了。下面是曾经的实验笔记。
recommend-type

使用hadoop实现WordCount实验报告.docx

使用hadoop实现WordCount详细实验报告,配有环境变量配置截图以及实验运行及结果详细过程描述与截图
recommend-type

verilog 编写数码管循环显示器

本设计使用 DE2 核心 FPGA 开发板,使用 Verilog 语言编写程序,实现数码管循环显示“HEUAC407”八位英文字符和数字。该设计分为两个模块:时钟-divider 模块和七段数码管驱动模块。 时钟-divider 模块(div 模块)...
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。