se-vgg16网络结构详解
时间: 2023-10-22 20:07:23 浏览: 310
VGG16.rar_VGG16模型详解_vgg16 python_vgg16模型_vgg16模型结构_wish154
Se-VGG16是一种基于VGG16的网络结构,它在VGG16的基础上进行了改进。VGG16是一个经典的卷积神经网络模型,由13个卷积层和3个全连接层组成,深度为16。Se-VGG16在VGG16的基础上添加了SE模块,这是一种注意力机制,用于增强模型的表示能力和泛化能力。
SE模块通过学习特征通道之间的关系,自适应地调整每个通道的权重。它包含两个关键步骤:先进行全局平均池化,将特征图的每个通道压缩成一个标量;然后,使用两个全连接层,将这个标量压缩成一个介于0和1之间的权重。最后,将这个权重乘以原始的特征图,得到加权后的特征图。
Se-VGG16的网络结构与VGG16相似,都由多个卷积层和全连接层组成。不同之处在于Se-VGG16在每个卷积块的最后一个卷积层后添加了一个SE模块。这样,每个卷积块都会自适应地调整特征通道的权重,以提高模型的表达能力。
总结起来,Se-VGG16是在VGG16基础上添加了SE模块的改进版。这种改进能够提高模型的表达能力和泛化能力,进一步提升了模型的性能。
: VGGNet模型有A-E五种结构网络,深度分别为11,11,13,16,19。其中较为典型的网络结构主要有vgg16和vgg19,本篇文章主要讲VGG16,并分享VGG16的Pytorch实现。
: 首先介绍一下感受野的概念。在卷积神经网络中,决定某一层输出结果中一个元素所对应的输入层的区域大小,被称作感受野(receptive field)。通俗的解释是,输出feature map上的一个单元对应输入层上的区域大小。 VGG亮点。
: keras官方预训练模型vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5。
阅读全文