python 不连续的时间变为连续
时间: 2023-06-10 21:06:05 浏览: 261
要将不连续的时间序列变为连续的时间序列,可以使用Python中的pandas库。下面是一个简单的例子:
假设有以下不连续的时间序列:
```
import pandas as pd
df = pd.DataFrame({'date': ['2022-01-01', '2022-01-02', '2022-01-04', '2022-01-05'],
'value': [10, 20, 30, 40]})
print(df)
```
输出:
```
date value
0 2022-01-01 10
1 2022-01-02 20
2 2022-01-04 30
3 2022-01-05 40
```
可以看到,时间序列中缺失了2022-01-03这一天的数据。为了将这个时间序列变为连续的时间序列,我们可以首先将date列转化为pandas中的DatetimeIndex类型,并将其设置为数据框的索引:
```
df['date'] = pd.to_datetime(df['date'])
df = df.set_index('date')
```
接着,使用`resample`函数将时间序列进行重新采样,指定采样频率为每天('D'):
```
df = df.resample('D').ffill()
```
这里使用了`ffill()`函数,即向前填充,将缺失的数据用前一个数据进行填充。如果想要使用后一个数据进行填充,可以使用`bfill()`函数。
最后,将日期索引转化为列,并重置索引:
```
df = df.reset_index()
```
这样,就可以得到一个连续的时间序列:
```
date value
0 2022-01-01 10
1 2022-01-02 20
2 2022-01-03 20
3 2022-01-04 30
4 2022-01-05 40
```
阅读全文
相关推荐


















