gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray, 100, 150) threshold=150 lines = cv2.HoughLines(edges, 1, np.pi/180, threshold) while True: if len(lines)<2 : threshold=threshold-25 lines = cv2.HoughLines(edges, 1, np.pi/180, threshold) if len(lines)>2 : threshold = threshold + 20 lines = cv2.HoughLines(edges, 1, np.pi / 180, threshold) if len(lines)==2: break for line in lines: rho = line[0][0] theta = line[0][1] a = np.cos(theta) b = np.sin(theta) x0 = a * rho y0 = b * rho x1 = int(x0 + 1000 * (-b)) y1 = int(y0 + 1000 * (a)) x2 = int(x0 - 1000 * (-b)) y2 = int(y0 - 1000 * (a)) print(x1,x2,y1,y2) cv2.line(img, (x1, y1), (x2, y2), (0, 0, 255), 2)
时间: 2024-04-28 11:21:51 浏览: 153
这段代码使用OpenCV库进行图像处理和直线检测。具体来说,它实现了以下步骤:
1.将原始图像转换为灰度图像,以方便后续处理。
2.使用Canny边缘检测算法找到图像中的边界。
3.使用Hough变换检测图像中的直线。
4.根据检测到的直线数量,不断调整阈值,使得检测到的直线数量为2。
5.遍历检测到的直线,计算直线的参数,并在原始图像上绘制直线。
具体来说,cv2.cvtColor()函数将原始图像转换为灰度图像,cv2.Canny()函数使用Canny算法进行边缘检测,cv2.HoughLines()函数使用Hough变换检测直线。while循环用于不断调整阈值,直到检测到2条直线为止。for循环遍历检测到的直线,计算直线的参数,并使用cv2.line()函数在原始图像上绘制直线。
注意:此段代码基于前提条件,必须提供一个名为img的原始图像,否则将无法执行。
相关问题
import os import cv2 import sys import math import random import imageio import numpy as np from scipy import misc, ndimage import matplotlib.pyplot as plt img_path = sys.argv[1] img = cv2.imread(img_path) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray, 50, 150, apertureSize=3) # 霍夫变换 lines = cv2.HoughLines(edges, 1, np.pi / 180, 0) rotate_angle = 0 for rho, theta in lines[0]: a = np.cos(theta) b = np.sin(theta) x0 = a * rho y0 = b * rho x1 = int(x0 + 1000 * (-b)) y1 = int(y0 + 1000 * (a)) x2 = int(x0 - 1000 * (-b)) y2 = int(y0 - 1000 * (a)) if x1 == x2 or y1 == y2: continue t = float(y2 - y1) / (x2 - x1) rotate_angle = math.degrees(math.atan(t)) if rotate_angle > 45: rotate_angle = -90 + rotate_angle elif rotate_angle < -45: rotate_angle = 90 + rotate_angle print("rotate_angle : "+str(rotate_angle)) rotate_img = ndimage.rotate(img, rotate_angle) imageio.imsave('ssss.png',rotate_img) cv2.imshow("img", rotate_img) cv2.waitKey(0)
这是一些Python代码,主要功能是读取一张图片并进行边缘检测,需要调用opencv、scipy、numpy等库。首先通过sys.argv获取图片路径,然后读取并转换成灰度图,接着使用Canny方法检测边缘并返回结果。
import cv2 # 读取图像 img = cv2.imread('user.jpg') # 灰度化 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 边缘检测 edges = cv2.Canny(gray, 100, 200) # 噪声去除 blur = cv2.GaussianBlur(edges, (3, 3), 0) # 显示图像 cv2.imshow('image', blur) cv2.waitKey(0) cv2.destroyAllWindows()
以上代码是一个简单的图像处理示例,主要包括灰度化、边缘检测和噪声去除等步骤,可以对输入的图像进行预处理,以提高后续处理的效果。具体流程如下:
1. 加载图像数据,使用cv2.imread()函数读取图像文件,将图像数据存储在img中。
2. 灰度化处理,使用cv2.cvtColor()函数将图像转换为灰度图像,存储在gray中。
3. 边缘检测,使用cv2.Canny()函数对灰度图像进行边缘检测,得到边缘检测结果,存储在edges中。
4. 噪声去除,使用cv2.GaussianBlur()函数对边缘检测结果进行高斯模糊处理,去除噪声,得到最终的预处理结果,存储在blur中。
5. 显示图像,使用cv2.imshow()函数将预处理结果显示出来,使用cv2.waitKey()函数等待用户按下任意键,最后使用cv2.destroyAllWindows()函数关闭所有窗口。
以上代码可以作为图像处理的基础示例,可以根据具体需求进行修改和完善,实现更加复杂的图像处理功能。需要注意的是,在进行图像处理时需要考虑数据安全和隐私保护问题,避免因为图像处理导致的信息泄露等问题。
阅读全文