文档中的代码有问题,怎么改才可以运行

时间: 2024-12-20 10:30:45 浏览: 3
PDF

DeepICL 完整测评文档+可运行代码

从你提供的错误信息来看,代码中的 `IndexError` 是因为 `positions` 数组在一维的情况下试图访问二维索引导致的。为了解决这个问题,需要检查并修正以下几个地方: 1. **初始化粒子位置**:确保 `initialize_population` 函数中生成的粒子位置是两维数组。 2. **粒子位置更新**:在 `update_particles` 和 `pso_main` 函数中,确保粒子的位置始终是两维数组。 3. **目标函数中的位置使用**:在 `objective_function` 函数中,确保正确地处理一维数组的情况。 下面是修改后的代码示例: ```python import numpy as np from scipy.spatial.distance import pdist, squareform import matplotlib.pyplot as plt from tqdm import tqdm # 数据提取 waste_sources = [ ('石桥镇', 107.118101, 31.298319, 2.86), # ... 其他数据 ... ] recycling_centers = [ ('分类回收节点 1', 107.381715, 31.469126, 150000, 65, 7.4, 0.87), # ... 其他数据 ... ] remanufacturing_centers = [ ('再制造中心 1', 107.095849, 30.759173, 300000, 200, 102, 0.87), # ... 其他数据 ... ] landfills = [ ('填埋场 1', 107.063886246, 31.3623822568, 54, 6.23), # ... 其他数据 ... ] # 计算两个地点之间的欧氏距离(公里) def haversine(lat1, lon1, lat2, lon2): R = 6371 # 地球半径(公里) phi1, phi2 = np.radians(lat1), np.radians(lat2) delta_phi = np.radians(lat2 - lat1) delta_lambda = np.radians(lon2 - lon1) a = np.sin(delta_phi / 2)**2 + np.cos(phi1) * np.cos(phi2) * np.sin(delta_lambda / 2)**2 c = 2 * np.arctan2(np.sqrt(a), np.sqrt(1 - a)) return R * c # 计算所有节点间的距离矩阵 def calculate_distances(sources, centers, landfills, manufacturing_centers): points = [] for _, lat, lon, _ in sources: points.append((lat, lon)) for _, lat, lon, _, _, _, _ in centers: points.append((lat, lon)) for _, lat, lon, _, _, _, _ in manufacturing_centers: points.append((lat, lon)) for _, lat, lon, _, _ in landfills: points.append((lat, lon)) dist = pdist(points, metric=lambda u, v: haversine(u[0], u[1], v[0], v[1])) return squareform(dist) # 目标函数定义 def objective_function(positions, distances, waste_sources, recycling_centers, remanufacturing_centers, landfills): n_sources = len(waste_sources) n_recyc = len(recycling_centers) n_manuf = len(remanufacturing_centers) n_landfills = len(landfills) total_cost = 0 total_emission = 0 alpha = 5.5 # 单位距离运输成本(元 / 吨 • 千米) beta = 0.35 # 单位距离运输碳排放因子( kg/t•km ) recycling_indices = positions[:n_sources, 0].astype(int) % n_recyc remanufacturing_indices = positions[:n_sources, 1].astype(int) % n_manuf for i in range(n_sources): source_id = recycling_indices[i] source_waste = waste_sources[i][3] for j in range(n_recyc): if j == source_id: rec_fixed_cost = recycling_centers[j][3] rec_variable_cost = recycling_centers[j][4] rec_emission = recycling_centers[j][5] transport_distance = distances[i][j + n_sources] transport_cost = alpha * source_waste * transport_distance transport_emission = beta * source_waste * transport_distance total_cost += rec_fixed_cost + rec_variable_cost * source_waste + transport_cost total_emission += rec_emission * source_waste + transport_emission rec_waste_to_manu = source_waste * 0.5 rec_waste_to_landfill = source_waste * 0.5 for k in range(n_manuf): if k == remanufacturing_indices[i]: manu_fixed_cost = remanufacturing_centers[k][3] manu_variable_cost = remanufacturing_centers[k][4] manu_emission = remanufacturing_centers[k][5] transport_distance_to_manu = distances[j + n_sources][k + n_sources + n_recyc] transport_cost_to_manu = alpha * rec_waste_to_manu * transport_distance_to_manu transport_emission_to_manu = beta * rec_waste_to_manu * transport_distance_to_manu total_cost += manu_fixed_cost + manu_variable_cost * rec_waste_to_manu + transport_cost_to_manu total_emission += manu_emission * rec_waste_to_manu + transport_emission_to_manu break for l in range(n_landfills): transport_distance_to_landfill = distances[j + n_sources][l + n_sources + n_recyc + n_manuf] transport_cost_to_landfill = alpha * rec_waste_to_landfill * transport_distance_to_landfill transport_emission_to_landfill = beta * rec_waste_to_landfill * transport_distance_to_landfill total_cost += landfills[l][3] * rec_waste_to_landfill + transport_cost_to_landfill total_emission += landfills[l][4] * rec_waste_to_landfill + transport_emission_to_landfill break return total_cost, total_emission # PSO 初始化 def initialize_population(num_particles, num_dimensions, n_recyc, n_manuf): positions = np.random.rand(num_particles, num_dimensions) * max(n_recyc, n_manuf) velocities = np.zeros_like(positions) personal_best_positions = positions.copy() personal_best_values = np.full(num_particles, float('inf')) global_best_position = None global_best_value = float('inf') return positions, velocities, personal_best_positions, personal_best_values, global_best_position, global_best_value # 更新个人最佳和全局最佳 def update_best_positions(values, particles, personal_best_values, personal_best_positions, global_best_value, global_best_position): for i, value in enumerate(values): if value < personal_best_values[i]: personal_best_positions[i] = particles[i] personal_best_values[i] = value global_best_value_new = np.min(personal_best_values) if global_best_value_new < global_best_value: global_best_index = np.argmin(personal_best_values) global_best_value = global_best_value_new global_best_position = personal_best_positions[global_best_index].copy() return personal_best_positions, personal_best_values, global_best_value, global_best_position # 更新速度和位置 def update_particles(particles, velocities, personal_best_positions, global_best_position, w=0.5, c1=2, c2=2): r1 = np.random.rand(*particles.shape) r2 = np.random.rand(*particles.shape) velocities = w * velocities + c1 * r1 * (personal_best_positions - particles) + c2 * r2 * (global_best_position - particles) particles += velocities return particles, velocities # 主程序 def pso_main(distances, waste_sources, recycling_centers, landfills, remanufacturing_centers, max_iterations=100, num_particles=30, verbose=True): n_sources = len(waste_sources) n_recyc = len(recycling_centers) n_manuf = len(remanufacturing_centers) n_landfills = len(landfills) num_dimensions = 2 * n_sources # 每个源头有两个维度,一个表示回收节点,另一个表示再制造节点 particles, velocities, personal_best_positions, personal_best_values, global_best_position, global_best_value = initialize_population(num_particles, num_dimensions, n_recyc, n_manuf) best_costs = [] best_emissions = [] for iteration in tqdm(range(max_iterations)): costs, emissions = zip(*[objective_function(p.reshape(n_sources, 2), distances, waste_sources, recycling_centers, remanufacturing_centers, landfills) for p in particles]) personal_best_positions, personal_best_values, global_best_value, global_best_position = update_best_positions(costs, particles, personal_best_values, personal_best_positions, global_best_value, global_best_position) best_costs.append(min(costs)) best_emissions.append(min(emissions)) particles, velocities = update_particles(particles, velocities, personal_best_positions, global_best_position) if verbose: print(f'Iteration {iteration}: Best Cost: {best_costs[-1]}, Best Emission: {best_emissions[-1]}') return best_costs, best_emissions, global_best_position.reshape(n_sources, 2) if __name__ == "__main__": distances = calculate_distances(waste_sources, recycling_centers, landfills, remanufacturing_centers) best_costs, best_emissions, global_best_position = pso_main(distances, waste_sources, recycling_centers, landfills, remanufacturing_centers) # 输出总成本和总碳排放量 print(f"Final Total Cost: {best_costs[-1]}") print(f"Final Total Emission: {best_emissions[-1]}") # 提取并输出选中的节点 n_sources = len(waste_sources) n_recyc = len(recycling_centers) n_manuf = len(remanufacturing_centers) n_selected_recyc = 8 n_selected_manuf = 5 # 确保每个回收中心和再制造中心的选择数符合要求 recycling_indices = global_best_position[:, 0].astype(int) % n_recyc remanufacturing_indices = global_best_position[:, 1].astype(int) % n_manuf selected_recycling_counts = np.bincount(recycling_indices, minlength=n_recyc) selected_manufacturing_counts = np.bincount(remanufacturing_indices, minlength=n_manuf) top_n_recycling = np.argsort(selected_recycling_counts)[-n_selected_recyc:] top_n_remanufacturing = np.argsort(selected_manufacturing_counts)[-n_selected_manuf:] print("Selected Recycling Nodes:") for idx in top_n_recycling: print(f"Recycling Center {idx}: Count {selected_recycling_counts[idx]}") print("Selected Remanufacturing Nodes:") for idx in top_n_remanufacturing: print(f"Remanufacturing Center {idx}: Count {selected_manufacturing_counts[idx]}") # 绘制收敛曲线 fig, ax1 = plt.subplots() ax1.plot(best_costs, 'r-', label='Cost') ax1.set_xlabel('Iterations') ax1.set_ylabel('Total Cost') ax2 = ax1.twinx() ax2.plot(best_emissions, 'b-', label='Emission') ax2.set_ylabel('Total Emission') plt.title('Convergence of PSO Algorithm') fig.tight_layout() plt.show() ``` ### 修改要点 1. **初始化粒子位置**:将 `positions` 数组的形状设为 `(num_particles, num_dimensions)`,其中 `num_dimensions` 是源数量乘以2。 2. **目标函数中的位置使用**:在调用 `objective_function` 时,确保将 `positions` reshape 为 `(n_sources, 2)` 形状。 3. **主程序中**:确保在每一代粒子迭代后,输出当前的最佳成本和排放量,并在最终输出时也将最佳位置重新 reshape 为 `(n_sources, 2)` 形状。 这样修改后,代码应该可以正常运行并且不会出现 `IndexError`。希望这些改动能帮助你解决问题!如果有其他问题,请随时告诉我。
阅读全文

相关推荐

最新推荐

recommend-type

C#获取Word文档中所有表格的实现代码分享

5. **遍历文档中的表格**:通过`_Document`对象的`Tables`属性,我们可以获取到文档中的所有表格。`Tables.Count`返回表格数量,然后通过for循环遍历每个表格。例如: ```csharp for (int tablePos = 1; tablePos ...
recommend-type

IFIX中一些常用功能的VBA代码.docx

未在描述中提供具体代码,但在IFIX中,可以使用VBA代码动态更改控件的字体大小,如`objControl.Font.Size = NewSize`。 8. **检测机器颜色是否为32真彩**: 可以通过查询系统信息或API来检测色彩深度,但未提供...
recommend-type

Prism7.1.0.431_WPF_官方中文文档.docx

**Prism 7.1.0.431 WPF 官方中文文档...以上内容只是Prism WPF官方中文文档的一部分,完整的文档将深入探讨这些概念,提供示例代码和详细指导,帮助开发者充分利用Prism的强大功能,创建高效、可维护的WPF应用程序。
recommend-type

docker中时区问题的处理方法

在Docker容器中,解决时区问题主要有两种方法: 1. **设置TZ环境变量**:在Dockerfile中添加`ENV TZ=Asia/Shanghai`,这将在构建镜像时设定默认的时区。另外,也可以在运行容器时通过`-e TZ=Asia/Shanghai`动态设置...
recommend-type

软件开发文档说明(完整流程)

软件开发文档是软件开发过程中的核心组成部分,它们不仅记录了软件开发的各个阶段,还确保了团队间的沟通清晰,降低了项目风险。以下是关于软件开发文档的详细解释: 首先,软件开发设计文档包括以下几类: 1. ...
recommend-type

Windows平台下的Fastboot工具使用指南

资源摘要信息:"Windows Fastboot.zip是一个包含了Windows环境下使用的Fastboot工具的压缩文件。Fastboot是一种在Android设备上使用的诊断和工程工具,它允许用户通过USB连接在设备的bootloader模式下与设备通信,从而可以对设备进行刷机、解锁bootloader、安装恢复模式等多种操作。该工具是Android开发者和高级用户在进行Android设备维护或开发时不可或缺的工具之一。" 知识点详细说明: 1. Fastboot工具定义: Fastboot是一种与Android设备进行交互的命令行工具,通常在设备的bootloader模式下使用,这个模式允许用户直接通过USB向设备传输镜像文件以及其他重要的设备分区信息。它支持多种操作,如刷写分区、读取设备信息、擦除分区等。 2. 使用环境: Fastboot工具原本是Google为Android Open Source Project(AOSP)提供的一个组成部分,因此它通常在Linux或Mac环境下更为原生。但由于Windows系统的普及性,许多开发者和用户需要在Windows环境下操作,因此存在专门为Windows系统定制的Fastboot版本。 3. Fastboot工具的获取与安装: 用户可以通过下载Android SDK平台工具(Platform-Tools)的方式获取Fastboot工具,这是Google官方提供的一个包含了Fastboot、ADB(Android Debug Bridge)等多种工具的集合包。安装时只需要解压到任意目录下,然后将该目录添加到系统环境变量Path中,便可以在任何位置使用Fastboot命令。 4. Fastboot的使用: 要使用Fastboot工具,用户首先需要确保设备已经进入bootloader模式。进入该模式的方法因设备而异,通常是通过组合特定的按键或者使用特定的命令来实现。之后,用户通过运行命令提示符或PowerShell来输入Fastboot命令与设备进行交互。常见的命令包括: - fastboot devices:列出连接的设备。 - fastboot flash [partition] [filename]:将文件刷写到指定分区。 - fastboot getvar [variable]:获取指定变量的值。 - fastboot reboot:重启设备。 - fastboot unlock:解锁bootloader,使得设备能够刷写非官方ROM。 5. Fastboot工具的应用场景: - 设备的系统更新或刷机。 - 刷入自定义恢复(如TWRP)。 - 在开发阶段对设备进行调试。 - 解锁设备的bootloader,以获取更多的自定义权限。 - 修复设备,例如清除用户数据分区或刷写新的boot分区。 - 加入特定的内核或修改系统分区。 6. 注意事项: 在使用Fastboot工具时需要格外小心,错误的操作可能会导致设备变砖或丢失重要数据。务必保证操作前已备份重要数据,并确保下载和刷入的固件是针对相应设备的正确版本。此外,不同的设备可能需要特定的驱动程序支持,因此在使用Fastboot之前还需要安装相应的USB驱动。 7. 压缩包文件说明: 资源中提到的"windows-fastboot.zip"是一个压缩文件,解压后应当包含一个或多个可执行文件、库文件等,这些文件合起来组成了Fastboot工具的Windows版本。解压后,用户应当参考解压后的文档或说明文件来进行安装和配置,以便能够正确地使用该工具。 总结而言,Fastboot作为一个功能强大的工具,它为Android设备的开发者和高级用户提供了一个界面简洁但功能全面的操作平台,以实现对设备深层次的控制。然而,它的使用要求用户具备一定的技术知识和经验,否则不当操作可能导致设备损坏。因此,使用Fastboot时应当谨慎并确保自己了解每个命令的具体含义和后果。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

DLMS规约深度剖析:从基础到电力通信标准的全面掌握

![DLMS规约基础介绍](https://afteracademy.com/images/what-is-data-model-in-dbms-and-what-are-its-types-hierarchical-model-48add64778fd4b8f.jpg) # 摘要 DLMS/COSEM是一种广泛应用于智能电网和电力计量领域的通信协议。本文首先介绍了DLMS规约的基础概念、起源以及核心技术原理,包括协议架构、数据模型、通信过程、数据封装与传输机制。随后,文章探讨了DLMS规约在电力通信中的实际应用,如智能电表和电网自动化系统的数据通信,并分析了DLMS规约的测试与验证方法。文
recommend-type

修改代码,使其正确运行

要使提供的代码能够正确运行,需要解决以下几个关键点: 1. **输入处理**:确保从控制台读取的文法规则和待解析字符串格式正确。 2. **FIRST集和FOLLOW集计算**:确保FIRST集和FOLLOW集的计算逻辑正确无误。 3. **预测分析表构建**:确保预测分析表的构建逻辑正确,并且能够处理所有可能的情况。 4. **LL(1)分析器**:确保LL(1)分析器能够正确解析输入字符串并输出解析过程。 以下是经过修改后的完整代码: ```java package com.example.demo10; import java.util.*; public class Main
recommend-type

Python机器学习基础入门与项目实践

资源摘要信息:"机器学习概述与Python在机器学习中的应用" 机器学习是人工智能的一个分支,它让计算机能够通过大量的数据学习来自动寻找规律,并据此进行预测或决策。机器学习的核心是建立一个能够从数据中学习的模型,该模型能够在未知数据上做出准确预测。这一过程通常涉及到数据的预处理、特征选择、模型训练、验证、测试和部署。 机器学习方法主要可以分为监督学习、无监督学习、半监督学习和强化学习。 监督学习涉及标记好的训练数据,其目的是让模型学会从输入到输出的映射。在这个过程中,模型学习根据输入数据推断出正确的输出值。常见的监督学习算法包括线性回归、逻辑回归、支持向量机(SVM)、决策树、随机森林和神经网络等。 无监督学习则是处理未标记的数据,其目的是探索数据中的结构。无监督学习算法试图找到数据中的隐藏模式或内在结构。常见的无监督学习算法包括聚类、主成分分析(PCA)、关联规则学习等。 半监督学习和强化学习则是介于监督学习和无监督学习之间的方法。半监督学习使用大量未标记的数据和少量标记数据进行学习,而强化学习则是通过与环境的交互来学习如何做出决策。 Python作为一门高级编程语言,在机器学习领域中扮演了非常重要的角色。Python之所以受到机器学习研究者和从业者的青睐,主要是因为其丰富的库和框架、简洁易读的语法以及强大的社区支持。 在Python的机器学习生态系统中,有几个非常重要的库: 1. NumPy:提供高性能的多维数组对象,以及处理数组的工具。 2. Pandas:一个强大的数据分析和操作工具库,提供DataFrame等数据结构,能够方便地进行数据清洗和预处理。 3. Matplotlib:一个用于创建静态、动态和交互式可视化的库,常用于生成图表和数据可视化。 4. Scikit-learn:一个简单且高效的工具,用于数据挖掘和数据分析,支持多种分类、回归、聚类算法等。 5. TensorFlow:由Google开发的开源机器学习库,适用于大规模的数值计算,尤其擅长于构建和训练深度学习模型。 6. Keras:一个高层神经网络API,能够使用TensorFlow、CNTK或Theano作为其后端进行计算。 机器学习的典型工作流程包括数据收集、数据预处理、特征工程、模型选择、训练、评估和部署。在这一流程中,Python可以贯穿始终,从数据采集到模型部署,Python都能提供强大的支持。 由于机器学习的复杂性,一个成功的机器学习项目往往需要跨学科的知识,包括统计学、数学、计算机科学、数据分析等领域。因此,掌握Python及其相关库的使用只是机器学习工作的一部分,还需要有扎实的理论基础和实践经验。 总结来说,机器学习是一个涉及数据挖掘、统计分析、算法优化等多个领域的综合性科学。Python由于其简洁的语法、丰富的库支持和强大的社区力量,成为了进行机器学习研究和应用开发的首选语言。随着技术的不断进步和算法的持续优化,机器学习的应用领域也在不断扩大,从早期的搜索引擎、推荐系统到现代的自动驾驶、医疗诊断等领域都有着广泛的应用。