matlab fmincon函数的非线性等式约束怎么表示矩阵相乘等于0的情况
时间: 2024-01-29 18:03:10 浏览: 118
在 Matlab 中,可以使用函数 handle 或者匿名函数来表示非线性等式约束条件。对于矩阵相乘等于0的情况,可以将其表示为一个非线性等式约束条件,具体实现方法如下:
假设矩阵相乘等于0的约束条件为 A*x = 0,其中 A 是一个 m 行 n 列的矩阵,x 是一个 n 维向量。则可以将其表示为一个函数 handle 或匿名函数,如下:
```matlab
function [c, ceq] = mycon(x)
[m, n] = size(A);
c = []; % 不等式约束条件为空
ceq = A*x; % 等式约束条件为 A*x = 0
end
```
其中,输出参数 c 和 ceq 分别表示不等式约束条件和等式约束条件。在此函数中,不等式约束条件为空,等式约束条件为 A*x = 0。在使用 fmincon 函数时,将该函数 handle 或匿名函数作为其参数传入即可,如下:
```matlab
x0 = [1; 1; 1]; % 初始解
A = [1 2 3; 4 5 6]; % 约束条件矩阵
options = optimoptions('fmincon', 'Algorithm', 'sqp');
[x, fval] = fmincon(@(x) objfun(x), x0, [], [], [], [], [], [], @(x) mycon(x), options);
```
其中,@(x) objfun(x) 表示目标函数的函数 handle 或匿名函数,[] 表示目标函数无约束条件,@(x) mycon(x) 表示约束条件的函数 handle 或匿名函数。
阅读全文
相关推荐



















