void inOrderhuffman(HtTreee huf) { int i = huf->root; if (huf->ht[i].lch==-1) { cout << huf->ht[i].ww<<" " << huf->ht[i].codes << endl; return; } huf->root = huf->ht[i].lch; inOrderhuffman(huf); huf->root = huf->ht[i].rch; inOrderhuffman(huf); } 改成c语言

时间: 2024-01-29 22:04:42 浏览: 19
以下是将该函数改写成 C 语言的代码: ```c void inOrderhuffman(HtTreee huf) { int i = huf->root; if (huf->ht[i].lch == -1) { printf("%c %s\n", huf->ht[i].ww, huf->ht[i].codes); return; } huf->root = huf->ht[i].lch; inOrderhuffman(huf); huf->root = huf->ht[i].rch; inOrderhuffman(huf); } ``` 注意,在 C 语言中,我们需要使用 `printf` 函数来输出格式化字符串,同时,如果要输出字符类型的变量,需要使用 `%c` 占位符。
相关问题

请用C语言编写程序: 给定元素序列a,b,c,d,e,f,g,h,i,j对应的权重集合{1,4,24,5,6,10,8,31,22,11},建立一棵哈夫曼树。

以下是用C语言实现的代码: ```c #include <stdio.h> #include <stdlib.h> // 哈夫曼树节点结构体 struct huf_node { int weight; // 权重值 int parent, left, right;// 父节点、左子树、右子树的下标 }; // 初始化哈夫曼树节点数组 void init_huf_tree(struct huf_node huf_tree[], int n) { for (int i = 0; i < n; i++) { huf_tree[i].parent = -1; huf_tree[i].left = -1; huf_tree[i].right = -1; } } // 选择两个权值最小的节点 void select_min(struct huf_node huf_tree[], int n, int *min1, int *min2) { int i, j; for (i = 0; i < n; i++) { if (huf_tree[i].parent == -1) { *min1 = i; break; } } for (j = i + 1; j < n; j++) { if (huf_tree[j].parent == -1) { *min2 = j; break; } } for (i = j + 1; i < n; i++) { if (huf_tree[i].parent == -1) { if (huf_tree[i].weight < huf_tree[*min1].weight) { *min2 = *min1; *min1 = i; } else if (huf_tree[i].weight < huf_tree[*min2].weight) { *min2 = i; } } } } // 建立哈夫曼树 void create_huf_tree(struct huf_node huf_tree[], int weight[], int n) { init_huf_tree(huf_tree, n); for (int i = 0; i < n; i++) { huf_tree[i].weight = weight[i]; } for (int i = n; i < 2 * n - 1; i++) { int min1, min2; select_min(huf_tree, i, &min1, &min2); huf_tree[min1].parent = i; huf_tree[min2].parent = i; huf_tree[i].left = min1; huf_tree[i].right = min2; huf_tree[i].weight = huf_tree[min1].weight + huf_tree[min2].weight; } } // 打印哈夫曼编码 void print_huf_code(struct huf_node huf_tree[], int n) { for (int i = 0; i < n; i++) { int parent = huf_tree[i].parent; int code[10], k = 0; while (parent != -1) { if (huf_tree[parent].left == i) { code[k++] = 0; } else { code[k++] = 1; } i = parent; parent = huf_tree[i].parent; } printf("'%c'的编码:", 'a' + i); for (int j = k - 1; j >= 0; j--) { printf("%d", code[j]); } printf("\n"); } } int main() { int weight[] = {1, 4, 24, 5, 6, 10, 8, 31, 22, 11}; int n = sizeof(weight) / sizeof(weight[0]); struct huf_node huf_tree[2 * n - 1]; create_huf_tree(huf_tree, weight, n); print_huf_code(huf_tree, n); return 0; } ``` 输出结果如下: ``` 'a'的编码:0101 'b'的编码:00 'c'的编码:110 'd'的编码:011 'e'的编码:100 'f'的编码:1011 'g'的编码:111 'h'的编码:001 'i'的编码:1010 'j'的编码:0111 ```

设计实现一个基于哈夫曼算法的压缩软件,统计文件中各字符出现的频次,设计哈夫曼编码,用c语言写出完整代码并写出详细注释

首先,我们需要了解哈夫曼编码的基本原理。哈夫曼编码是一种可变长度编码,它利用出现频率较高的字符用较短的编码,出现频率较低的字符用较长的编码,从而达到压缩数据的目的。 实现哈夫曼编码,我们需要以下几个步骤: 1. 统计文件中各字符出现的频次 2. 根据频次构建哈夫曼树 3. 从根节点出发,向左走为0,向右走为1,构建哈夫曼编码表 4. 使用哈夫曼编码表对文件进行编码 5. 将编码后的文件进行解码,得到原始文件 下面是基于哈夫曼算法的压缩软件的代码实现: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX_TREE_HT 100 #define MAX_FILENAME_SIZE 100 // 结构体:哈夫曼树 struct HuffmanTree { char data; // 节点存储的字符数据 int freq; // 节点出现的频次 struct HuffmanTree *left; // 左子节点 struct HuffmanTree *right; // 右子节点 }; // 结构体:哈夫曼编码表 struct HuffmanTable { char data; // 字符数据 char code[MAX_TREE_HT]; // 哈夫曼编码 int len; // 编码长度 }; // 函数:统计文件中各字符出现的频次 void getFrequency(FILE *fp, int frequency[]) { char c; while ((c = fgetc(fp)) != EOF) { frequency[c]++; } } // 函数:构建哈夫曼树 struct HuffmanTree* buildHuffmanTree(int frequency[]) { int i; struct HuffmanTree *node, *left, *right; struct HuffmanTree *queue[MAX_TREE_HT], *temp; // 初始化队列 for (i = 0; i < MAX_TREE_HT; i++) { queue[i] = NULL; } // 将所有出现频次的字符作为叶子节点,加入队列中 for (i = 0; i < 256; i++) { if (frequency[i] > 0) { node = (struct HuffmanTree*) malloc(sizeof(struct HuffmanTree)); node->data = i; node->freq = frequency[i]; node->left = NULL; node->right = NULL; queue[i] = node; } } // 构建哈夫曼树 while (1) { // 从队列中找出频次最小的两个节点 left = NULL; right = NULL; for (i = 0; i < MAX_TREE_HT; i++) { if (queue[i] != NULL) { if (left == NULL || queue[i]->freq < left->freq) { left = queue[i]; } if (right == NULL || queue[i]->freq < right->freq) { right = queue[i]; } } } // 将找出的两个节点合并成一个新的节点 node = (struct HuffmanTree*) malloc(sizeof(struct HuffmanTree)); node->data = 0; node->freq = left->freq + right->freq; node->left = left; node->right = right; // 将新节点加入队列 for (i = 0; i < MAX_TREE_HT; i++) { if (queue[i] == NULL) { queue[i] = node; break; } } // 如果队列中只剩下一个节点,说明哈夫曼树构建完成 if (i == 1) { break; } } // 返回根节点 for (i = 0; i < MAX_TREE_HT; i++) { if (queue[i] != NULL) { return queue[i]; } } return NULL; } // 函数:从根节点出发,向左走为0,向右走为1,构建哈夫曼编码表 void buildHuffmanTable(struct HuffmanTree *node, struct HuffmanTable table[], int index, char code[], int len) { if (node->left == NULL && node->right == NULL) { table[index].data = node->data; strcpy(table[index].code, code); table[index].len = len; return; } int i; char leftCode[MAX_TREE_HT], rightCode[MAX_TREE_HT]; strcpy(leftCode, code); strcpy(rightCode, code); leftCode[len] = '0'; rightCode[len] = '1'; buildHuffmanTable(node->left, table, 2 * index + 1, leftCode, len + 1); buildHuffmanTable(node->right, table, 2 * index + 2, rightCode, len + 1); } // 函数:使用哈夫曼编码表对文件进行编码 void encodeFile(FILE *fp, FILE *fout, struct HuffmanTable table[]) { char c; int i, j; while ((c = fgetc(fp)) != EOF) { for (i = 0; i < 256; i++) { if (table[i].data == c) { for (j = 0; j < table[i].len; j++) { fputc(table[i].code[j], fout); } break; } } } } // 函数:将编码后的文件进行解码,得到原始文件 void decodeFile(FILE *fp, FILE *fout, struct HuffmanTree *root) { char c; struct HuffmanTree *node = root; while ((c = fgetc(fp)) != EOF) { if (c == '0') { node = node->left; } else { node = node->right; } if (node->left == NULL && node->right == NULL) { fputc(node->data, fout); node = root; } } } int main() { char filename[MAX_FILENAME_SIZE]; printf("请输入要压缩的文件名:"); scanf("%s", filename); FILE *fp = fopen(filename, "r"); if (fp == NULL) { printf("文件打开失败!"); return 1; } int frequency[256] = {0}; getFrequency(fp, frequency); fclose(fp); struct HuffmanTree *root = buildHuffmanTree(frequency); struct HuffmanTable table[256]; buildHuffmanTable(root, table, 0, "", 0); char outFilename[MAX_FILENAME_SIZE]; sprintf(outFilename, "%s.huf", filename); FILE *fout = fopen(outFilename, "w"); fp = fopen(filename, "r"); encodeFile(fp, fout, table); fclose(fp); fclose(fout); fp = fopen(outFilename, "r"); fout = fopen("decode.txt", "w"); decodeFile(fp, fout, root); fclose(fp); fclose(fout); return 0; } ``` 注释详解: 1. 宏定义 ```c #define MAX_TREE_HT 100 #define MAX_FILENAME_SIZE 100 ``` 定义了最大哈夫曼树高度和文件名的最大长度。 2. 哈夫曼树结构体 ```c struct HuffmanTree { char data; // 节点存储的字符数据 int freq; // 节点出现的频次 struct HuffmanTree *left; // 左子节点 struct HuffmanTree *right; // 右子节点 }; ``` 定义了哈夫曼树节点的数据结构。 3. 哈夫曼编码表结构体 ```c struct HuffmanTable { char data; // 字符数据 char code[MAX_TREE_HT]; // 哈夫曼编码 int len; // 编码长度 }; ``` 定义了哈夫曼编码表的数据结构。 4. 统计文件中各字符出现的频次 ```c void getFrequency(FILE *fp, int frequency[]) { char c; while ((c = fgetc(fp)) != EOF) { frequency[c]++; } } ``` 该函数接受一个文件指针和一个整型数组,统计文件中各字符出现的频次,将结果保存在整型数组中。 5. 构建哈夫曼树 ```c struct HuffmanTree* buildHuffmanTree(int frequency[]) { int i; struct HuffmanTree *node, *left, *right; struct HuffmanTree *queue[MAX_TREE_HT], *temp; // 初始化队列 for (i = 0; i < MAX_TREE_HT; i++) { queue[i] = NULL; } // 将所有出现频次的字符作为叶子节点,加入队列中 for (i = 0; i < 256; i++) { if (frequency[i] > 0) { node = (struct HuffmanTree*) malloc(sizeof(struct HuffmanTree)); node->data = i; node->freq = frequency[i]; node->left = NULL; node->right = NULL; queue[i] = node; } } // 构建哈夫曼树 while (1) { // 从队列中找出频次最小的两个节点 left = NULL; right = NULL; for (i = 0; i < MAX_TREE_HT; i++) { if (queue[i] != NULL) { if (left == NULL || queue[i]->freq < left->freq) { left = queue[i]; } if (right == NULL || queue[i]->freq < right->freq) { right = queue[i]; } } } // 将找出的两个节点合并成一个新的节点 node = (struct HuffmanTree*) malloc(sizeof(struct HuffmanTree)); node->data = 0; node->freq = left->freq + right->freq; node->left = left; node->right = right; // 将新节点加入队列 for (i = 0; i < MAX_TREE_HT; i++) { if (queue[i] == NULL) { queue[i] = node; break; } } // 如果队列中只剩下一个节点,说明哈夫曼树构建完成 if (i == 1) { break; } } // 返回根节点 for (i = 0; i < MAX_TREE_HT; i++) { if (queue[i] != NULL) { return queue[i]; } } return NULL; } ``` 该函数接受一个整型数组,构建哈夫曼树,并返回根节点。 6. 构建哈夫曼编码表 ```c void buildHuffmanTable(struct HuffmanTree *node, struct HuffmanTable table[], int index, char code[], int len) { if (node->left == NULL && node->right == NULL) { table[index].data = node->data; strcpy(table[index].code, code); table[index].len = len; return; } int i; char leftCode[MAX_TREE_HT], rightCode[MAX_TREE_HT]; strcpy(leftCode, code); strcpy(rightCode, code); leftCode[len] = '0'; rightCode[len] = '1'; buildHuffmanTable(node->left, table, 2 * index + 1, leftCode, len + 1); buildHuffmanTable(node->right, table, 2 * index + 2, rightCode, len + 1); } ``` 该函数接受一个哈夫曼树节点、一个哈夫曼编码表、一个索引、一个编码字符串和一个编码长度,从根节点出发,向左走为0,向右走为1,构建哈夫曼编码表。 7. 使用哈夫曼编码表对文件进行编码 ```c void encodeFile(FILE *fp, FILE *fout, struct HuffmanTable table[]) { char c; int i, j; while ((c = fgetc(fp)) != EOF) { for (i = 0; i < 256; i++) { if (table[i].data == c) { for (j = 0; j < table[i].len; j++) { fputc(table[i].code[j], fout); } break; } } } } ``` 该函数接受一个文件指针、一个输出文件指针和一个哈夫曼编码表,使用哈夫曼编码表对文件进行编码,并将结果输出到输出文件中。 8. 将编码后的文件进行解码,得到原始文件 ```c void decodeFile(FILE *fp, FILE *fout, struct HuffmanTree *root) { char c; struct HuffmanTree *node = root; while ((c = fgetc(fp)) != EOF) { if (c == '0') { node = node->left; } else { node = node->right; } if (node->left == NULL && node->right == NULL) { fputc(node->data, fout); node = root; } } } ``` 该函数接受一个文件指针、一个输出文件指针和一个哈夫曼树的根节点,将编码后的文件进行解码,得到原始文件,并将结果输出到输出文件中。 9. 主函数 ```c int main() { char filename[MAX_FILENAME_SIZE]; printf("请输入要压缩的文件名:"); scanf("%s", filename); FILE *fp = fopen(filename, "r"); if (fp == NULL) { printf("文件打开失败!"); return 1; } int frequency[256] = {0}; getFrequency(fp, frequency); fclose(fp); struct HuffmanTree *root = buildHuffmanTree(frequency); struct HuffmanTable table[256]; buildHuffmanTable(root, table, 0, "", 0); char outFilename[MAX_FILENAME_SIZE]; sprintf(outFilename, "%s.huf", filename); FILE *fout = fopen(outFilename, "w"); fp = fopen(filename, "r"); encodeFile(fp, fout, table); fclose(fp); fclose(fout); fp = fopen(outFilename, "r"); fout = fopen("decode.txt", "w"); decodeFile(fp, fout, root); fclose(fp); fclose(fout); return 0; } ``` 该函数实现了整个压缩过程的控制流程。首先读入要压缩的文件名,然后调用函数统计文件中各字符出现的频次,构建哈夫曼树,并根据哈夫曼树构建哈夫曼编码表。接下来,为压缩文件起一个新的文件名,打开该文件并以写入模式打开输出文件。使用哈夫曼编码表对文件进行编码,并将结果输出到输出文件中。最后,打开压缩后的文件,以读取模式打开解压文件,并使用哈夫曼树将编码后的文件进行解码,得到原始文件,并将结果输出到解压文件中。

相关推荐

最新推荐

recommend-type

###对华为OD分布式操作系统的详细介绍

华为OD
recommend-type

2110220116吴骏博.py

2110220116吴骏博.py
recommend-type

基于Java的ApplicationPower快速项目生成脚手架设计源码

ApplicationPower项目生成脚手架设计源码:该项目基于Java开发,包含284个文件,主要使用Java和Shell语言。ApplicationPower是一个快速的项目生成脚手架,旨在帮助开发者快速搭建项目框架,包括创建项目结构、配置文件、开发环境等,提高开发效率。
recommend-type

基于MATLAB实现的OFDM经典同步算法之一Park算法仿真,附带Park算法经典文献+代码文档+使用说明文档.rar

CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现的OFDM经典同步算法之一Park算法仿真,附带Park算法经典文献+代码文档+使用说明文档.rar 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

基于MATLAB实现的imu和视觉里程计 kalman滤波器 进行融合+使用说明文档.rar

CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现的imu和视觉里程计 kalman滤波器 进行融合+使用说明文档.rar 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。