纵向联邦学习嵌入模型
时间: 2023-11-16 14:56:17 浏览: 156
联邦学习的模型压缩案例
纵向联邦学习是一种联邦学习的形式,适用于数据集垂直分布的场景。在这种情况下,每个参与方都持有不同的特征,这些特征可以被合并以提高建模的性能。 纵向联邦学习的核心思想是将数据分为非重叠集合,并使每个参与方在没有暴露个体数据的情况下协同进行模型训练。因此,与横向联邦学习比较,纵向联邦学习更强调数据的隐私性。在纵向联邦学习中,参与方可以通过加密的方式来保护个体数据,并通过安全和高效的协议来协同训练模型。而嵌入模型是纵向联邦学习中的一个重要的应用场景,它可以用于不同参与方之间的特征融合,从而实现更好的建模效果。在嵌入模型中,特征通常被转换为低维向量,这些向量反映了数据之间的关系,从而提高了模型的性能。总的来说,纵向联邦学习嵌入模型是一个非常有前途的研究领域,它可以在不暴露个体数据的情况下提高数据建模的效率和准确性。
--相关问题--:
阅读全文