基于cqt的乐器识别代码
时间: 2024-02-25 14:57:59 浏览: 97
以下是基于CQT的乐器识别的代码示例(使用Python语言和Librosa库):
```python
import librosa
import numpy as np
import os
# 定义CQT的参数
cqt_params = {
'hop_length': 512,
'n_bins': 252,
'bins_per_octave': 36,
'sr': 22050,
'fmin': 55,
'normalize_magnitude': True
}
# 加载训练好的模型
model = load_model('instrument_classifier.h5')
# 定义标签
labels = ['bass', 'cello', 'clarinet', 'flute', 'guitar', 'organ', 'piano', 'saxophone', 'trumpet', 'violin']
# 定义测试音频文件夹路径
test_folder = './test/'
# 遍历测试文件夹内的所有音频文件
for filename in os.listdir(test_folder):
# 加载音频文件
audio, sr = librosa.load(test_folder + filename, sr=cqt_params['sr'])
# 计算CQT
cqt = np.abs(librosa.cqt(audio, **cqt_params))
# 将CQT转换成模型所需的形状
cqt = np.transpose(cqt)
cqt = np.expand_dims(cqt, axis=0)
# 使用模型进行预测
prediction = model.predict(cqt)[0]
# 打印预测结果
predicted_label = labels[np.argmax(prediction)]
print('Predicted label for', filename, ':', predicted_label)
```
这段代码将遍历指定的测试文件夹中的所有音频文件,计算每个音频文件的CQT并将其转换为模型所需的形状,最后使用训练好的模型进行预测并输出预测结果。
阅读全文