fer = pipeline(Tasks.facial_expression_recognition, 'damo/cv_vgg19_facial-expression-recognition_fer') img_path='./d/image60.jpg' ret = fer(img_path) label_idx = np.array(ret['scores']).argmax() label = ret['labels'][label_idx] print(f'facial expression : {label}.')
时间: 2024-04-19 13:27:46 浏览: 146
您的第一个问题是关于使用CSDN开发的人脸表情识别模型进行图像分类的代码。这段代码使用了名为"damo/cv_vgg19_facial-expression-recognition_fer"的模型来对给定的图像进行分类,并输出图像的表情标签。
首先,我们使用`pipeline`函数从CSDN开发的人脸表情识别任务中加载模型。模型的名称是"damo/cv_vgg19_facial-expression-recognition_fer"。
然后,我们指定了要分类的图像路径为"./d/image60.jpg"。接下来,我们使用加载的模型对该图像进行分类,并将结果保存在`ret`变量中。
通过`np.array(ret['scores']).argmax()`,我们找到具有最高分数的表情标签的索引。
最后,我们通过索引获取表情标签,并将其保存在`label`变量中。最后一行代码打印出了该图像的表情标签。
请注意,这段代码的实现假设您已经正确安装了所需的依赖项,包括CSDN开发的人脸表情识别模型和相关的Python库。
相关问题
def evaluate_test(): import preprocess """ 在未训练的数据集上进行测试 :return: """ filters = Gabor().build_filters() from tqdm import tqdm from data import CK, Fer2013, Jaffe _, x, y = Fer2013().gen_train_no() train = [] for i in tqdm(np.arange(0, x.shape[0], 1)): x[i] = preprocess.gray_norm(x[i]) x[i] = preprocess.adaptive_histogram_equalization(x[i]) res = Gabor().getGabor(x[i], filters, False, 6) res = np.array(res).reshape(-1) res = np.append(res, y[i]) train.append(res) train = np.array(train) test = [] _, x, y = Jaffe().gen_train_no() for i in tqdm(np.arange(0, x.shape[0], 1)): x[i] = preprocess.gray_norm(x[i]) x[i] = preprocess.adaptive_histogram_equalization(x[i]) res = Gabor().getGabor(x[i], filters, False, 6) res = np.array(res).reshape(-1) res = np.append(res, y[i]) test.append(res) test = np.array(train) Classifier().SVM(train, test) test = [] _, x, y = CK().gen_train_no() for i in tqdm(np.arange(0, x.shape[0], 1)): x[i] = preprocess.gray_norm(x[i]) x[i] = preprocess.adaptive_histogram_equalization(x[i]) res = Gabor().getGabor(x[i], filters, False, 6) res = np.array(res).reshape(-1) res = np.append(res, y[i]) test.append(res) test = np.array(train) Classifier().SVM(train, test)
这段代码定义了一个函数evaluate_test,用于对未经训练的数据集进行测试。函数中使用了多个模块和类,包括preprocess、Gabor、tqdm、data和Classifier等。
首先,函数调用Gabor().build_filters()方法获取Gabor滤波器,然后使用Fer2013、Jaffe和CK数据集中的部分数据生成训练集和测试集,对每个样本进行预处理,包括灰度化和自适应直方图均衡化等操作。接着,使用Gabor().getGabor方法对每个样本进行Gabor滤波,得到一个包含多个特征的向量,并将该向量与该样本的标签合并为一个样本,添加到train或test中。最后,对训练集和测试集分别进行SVM分类器的训练和测试,输出测试结果。
该函数的作用是测试在未经过训练的数据集上,使用Gabor滤波器提取特征,并使用SVM分类器进行分类的效果如何。
以下代码出现input depth must be evenly divisible by filter depth: 1 vs 3错误是为什么,代码应该怎么改import tensorflow as tf from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras.optimizers import SGD from keras.utils import np_utils from keras.preprocessing.image import ImageDataGenerator from keras.applications.vgg16 import VGG16 import numpy # 加载FER2013数据集 with open('E:/BaiduNetdiskDownload/fer2013.csv') as f: content = f.readlines() lines = numpy.array(content) num_of_instances = lines.size print("Number of instances: ", num_of_instances) # 定义X和Y X_train, y_train, X_test, y_test = [], [], [], [] # 按行分割数据 for i in range(1, num_of_instances): try: emotion, img, usage = lines[i].split(",") val = img.split(" ") pixels = numpy.array(val, 'float32') emotion = np_utils.to_categorical(emotion, 7) if 'Training' in usage: X_train.append(pixels) y_train.append(emotion) elif 'PublicTest' in usage: X_test.append(pixels) y_test.append(emotion) finally: print("", end="") # 转换成numpy数组 X_train = numpy.array(X_train, 'float32') y_train = numpy.array(y_train, 'float32') X_test = numpy.array(X_test, 'float32') y_test = numpy.array(y_test, 'float32') # 数据预处理 X_train /= 255 X_test /= 255 X_train = X_train.reshape(X_train.shape[0], 48, 48, 1) X_test = X_test.reshape(X_test.shape[0], 48, 48, 1) # 定义VGG16模型 vgg16_model = VGG16(weights='imagenet', include_top=False, input_shape=(48, 48, 3)) # 微调模型 model = Sequential() model.add(vgg16_model) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(7, activation='softmax')) for layer in model.layers[:1]: layer.trainable = False # 定义优化器和损失函数 sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(optimizer=sgd, loss='categorical_crossentropy', metrics=['accuracy']) # 数据增强 datagen = ImageDataGenerator( featurewise_center=False, featurewise_std_normalization=False, rotation_range=20, width_shift_range=0.2, height_shift_range=0.2, horizontal_flip=True) datagen.fit(X_train) # 训练模型 model.fit_generator(datagen.flow(X_train, y_train, batch_size=32), steps_per_epoch=len(X_train) / 32, epochs=10) # 评估模型 score = model.evaluate(X_test, y_test, batch_size=32) print("Test Loss:", score[0]) print("Test Accuracy:", score[1])
这个错误是由于卷积层(Conv2D)中的过滤器深度与输入张量深度不匹配导致的。在这个例子中,过滤器深度(filter depth)是3,但是输入张量(input depth)的深度是1,无法整除,因此出现错误。为了解决这个问题,我们需要用一个输入深度能够被过滤器深度整除的模型输入数据。
代码改动可以通过如下方式完成:
1. 修改模型输入数据的维度,以匹配过滤器深度的要求。
2. 转换输入数据的颜色通道,以生成一个3个通道的输入张量。
下面是一个修改后的代码示例:
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.optimizers import SGD
from keras.utils import np_utils
from keras.preprocessing.image import ImageDataGenerator
from keras.applications.vgg16 import VGG16
import numpy as np
# 修改输入数据的维度
img_rows, img_cols = 32, 32
input_shape = (img_rows, img_cols, 3)
# 载入数据集
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
# 将数据转换为浮点数类型
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
# 将像素值归一化到[0, 1]
x_train /= 255
x_test /= 255
# 将类向量转换为二进制类矩阵
num_classes = 10
y_train = np_utils.to_categorical(y_train, num_classes)
y_test = np_utils.to_categorical(y_test, num_classes)
# 生成并优化模型
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=input_shape))
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',
optimizer=sgd,
metrics=['accuracy'])
# 在训练数据上生成扩增的数据
batch_size = 100
epochs = 5
datagen = ImageDataGenerator(
featurewise_center=False, # 将输入数据集按均值去中心化
samplewise_center=False, # 将每个样本按均值去中心化
featurewise_std_normalization=False, # 将输入数据除以数据集的标准差
samplewise_std_normalization=False, # 将每个样本除以自身的标准差
zca_whitening=False, # ZCA白化
rotation_range=0, # 随机旋转图像范围
width_shift_range=0.1, # 随机水平移动图像范围
height_shift_range=0.1, # 随机垂直移动图像范围
horizontal_flip=True, # 随机翻转图像
vertical_flip=False # # 随机翻转图像
)
datagen.fit(x_train)
model.fit(datagen.flow(x_train, y_train,
batch_size=batch_size),
epochs=epochs,
validation_data=(x_test, y_test),
steps_per_epoch=x_train.shape[0] // batch_size)
# 输出模型的准确率
scores = model.evaluate(x_test, y_test, verbose=1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])
阅读全文