根据软件设计基础课程,用c语言写一段代码,实现实现1 实验目的 掌握队列结构的实现方式 掌握队列成员算法的实现。 熟悉利用队列解决问题的一般思路。 2实验内容与要求 某天, 雷震子, 姜子牙, 哪 吒, 申公豹, 九尾狐, 天 尊 太 乙, 杨 戬, 黄飞虎, 纣 王, 李 靖, 土行孙 等12人外出游玩,做约瑟夫环的游戏。12人围成一周,现在由任意一个人,从1开始报数,数到m的人出列;他的下一个人又从1开始报数,数到m的那个人又出列;依此规律重复下去,直到所有的人全部出列。 出列完毕后,12人再按出列顺序从左到右排成一排。现在将12人分4为组。由最左侧人开始从1开始报数,数到4后,下一人重新从1开始报数,直到12人全部报数完毕。报数相同的人分为一组。 要求:1)编写算法,输入任何一个人的姓名和任意正整数m(m<=12),按顺序输出出列人的姓名。 并按出列顺序将出列人的姓名存入另外一个新建的队列。 2)编写分组算法,输出分组结果。3)有代码注释

时间: 2024-03-05 19:47:33 浏览: 40
以下是用C语言实现约瑟夫环游戏和分组的代码,注释已经加上: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAXSIZE 20 //队列的最大长度 typedef struct { char name[10]; //姓名 int number; //编号 } Person; typedef struct { Person data[MAXSIZE]; //存储队列中的人物信息 int front; //队头指针 int rear; //队尾指针 } SeqQueue; //初始化队列 void InitQueue(SeqQueue *Q) { Q->front = Q->rear = 0; } //判断队列是否为空 int QueueEmpty(SeqQueue Q) { if (Q.front == Q.rear) return 1; //队列为空 else return 0; } //判断队列是否已满 int QueueFull(SeqQueue Q) { if ((Q.rear + 1) % MAXSIZE == Q.front) return 1; //队列已满 else return 0; } //入队操作 int EnQueue(SeqQueue *Q, Person x) { if (QueueFull(*Q)) return 0; //队列已满,入队失败 else { Q->data[Q->rear] = x; Q->rear = (Q->rear + 1) % MAXSIZE; return 1; //入队成功 } } //出队操作 int DeQueue(SeqQueue *Q, Person *x) { if (QueueEmpty(*Q)) return 0; //队列为空,出队失败 else { *x = Q->data[Q->front]; Q->front = (Q->front + 1) % MAXSIZE; return 1; //出队成功 } } //约瑟夫环游戏 void josephus(SeqQueue *Q, int m) { int i; Person x; while (!QueueEmpty(*Q)) { //数到m的人出列 for (i = 1; i < m; i++) { DeQueue(Q, &x); EnQueue(Q, x); } DeQueue(Q, &x); //输出出列人的姓名 printf("%s ", x.name); //将出列人的姓名存入另外一个新建的队列 EnQueue(&newQueue, x); } printf("\n"); } //分组 void grouping(SeqQueue *Q) { int i, j, k; Person x; SeqQueue group[4]; //存储分组结果的队列数组 //初始化四个队列 for (i = 0; i < 4; i++) { InitQueue(&group[i]); } j = 0; //记录当前报数的人所在的队列编号 k = 1; //记录当前报数的人的编号 while (!QueueEmpty(newQueue)) { DeQueue(&newQueue, &x); //将当前报数的人放入对应的队列中 EnQueue(&group[j], x); //报数加1 k++; //如果报数达到4,则下一个人重新从1开始报数 if (k > 4) { k = 1; //队列编号加1 j++; //如果队列编号为4,则重新从0开始 if (j > 3) j = 0; } } //输出分组结果 for (i = 0; i < 4; i++) { printf("第%d组:", i + 1); while (!QueueEmpty(group[i])) { DeQueue(&group[i], &x); printf("%s ", x.name); } printf("\n"); } } int main() { SeqQueue Q; char name[10]; int m, i; Person x; printf("请输入约瑟夫环游戏中的m值:"); scanf("%d", &m); //初始化队列 InitQueue(&Q); //将12个人依次入队 for (i = 1; i <= 12; i++) { sprintf(name, "person%d", i); strcpy(x.name, name); x.number = i; EnQueue(&Q, x); } //进行约瑟夫环游戏 josephus(&Q, m); //分组 grouping(&newQueue); return 0; } ``` 在上述代码中,我们定义了两个队列:原队列 `Q` 和新队列 `newQueue`,其中原队列 `Q` 存储的是12个人的信息,新队列 `newQueue` 存储的是按出列顺序排列的人的姓名。在进行约瑟夫环游戏时,每出列一个人都将其姓名入队到新队列 `newQueue` 中。在分组时,我们使用了一个队列数组 `group` 存储分组结果,其中 `group[i]` 表示第 i+1 组。最后,我们将每个队列中的人的姓名输出即可。

相关推荐

最新推荐

recommend-type

C++数据结构与算法之双缓存队列实现方法详解

C++数据结构与算法之双缓存队列实现方法详解 本文主要介绍了C++数据结构与算法之双缓存队列实现方法,结合实例形式分析了双缓存队列的原理、实现方法与相关注意事项。 知识点一:双缓存队列的定义 双缓存队列是一...
recommend-type

优先队列(priority_queue)的C语言实现代码

这里我们将深入探讨如何通过数组二叉堆实现优先队列,包括其数据结构设计和主要功能的实现。 首先,我们要定义一个键值对结构体(KeyValue),因为通常在优先队列中,我们不仅需要保存元素,还需要附加一个优先级。...
recommend-type

C语言使用广度优先搜索算法解决迷宫问题(队列)

本文主要介绍了C语言使用广度优先搜索算法解决迷宫问题的相关知识点,详细解释了C语言队列广度优先搜索算法的使用技巧和实现细节。 一、广度优先搜索算法的基本概念 广度优先搜索(Breadth-First Search,简称 BFS...
recommend-type

C语言数据结构优先队列实现

优先队列是0个或多个元素的集合,每个元素都有一个优先权或值,对优先队列执行的操作有1) 查找;2) 插入一个新元素;3) 删除。 本程序的实现 二. 实现本优先队列的初始化,查找,插入,删除操作,并且控制其查找,插入...
recommend-type

C语言实现餐饮结账管理系统

"C语言实现餐饮结账管理系统" 本文主要介绍了使用C语言...本文提供了一个完整的餐饮结账管理系统的设计和实现,涵盖了C语言基础知识、文件I/O操作、数据结构和算法、程序设计和实现、软件测试和调试等多方面的知识点。
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。