IPSO-GRU算法 python代码
时间: 2023-04-07 12:04:10 浏览: 157
我可以回答这个问题,以下是一个IPSO-GRU算法的Python代码示例:
```python
import numpy as np
import tensorflow as tf
# 定义IPSO-GRU模型
class IPSO_GRU(tf.keras.Model):
def __init__(self, input_dim, output_dim, hidden_dim, num_layers):
super(IPSO_GRU, self).__init__()
self.num_layers = num_layers
self.hidden_dim = hidden_dim
self.gru_layers = []
for i in range(num_layers):
self.gru_layers.append(tf.keras.layers.GRU(hidden_dim, return_sequences=True))
self.dense = tf.keras.layers.Dense(output_dim)
def call(self, inputs):
x = inputs
for i in range(self.num_layers):
x = self.gru_layers[i](x)
x = self.dense(x)
return x
# 定义IPSO-GRU算法
def IPSO_GRU_algorithm(X, y, input_dim, output_dim, hidden_dim, num_layers, population_size, max_iter):
# 初始化种群
population = []
for i in range(population_size):
model = IPSO_GRU(input_dim, output_dim, hidden_dim, num_layers)
model.build(input_shape=(None, None, input_dim))
population.append(model)
# 计算适应度函数
def fitness_function(model):
y_pred = model(X)
loss = tf.keras.losses.mean_squared_error(y, y_pred)
return 1 / (1 + loss)
# 迭代优化
for i in range(max_iter):
# 计算适应度值
fitness_values = []
for model in population:
fitness_values.append(fitness_function(model))
# 选择最优个体
best_model = population[np.argmax(fitness_values)]
# 更新种群
for j in range(population_size):
if population[j] != best_model:
# 交叉操作
new_model = IPSO_GRU(input_dim, output_dim, hidden_dim, num_layers)
new_model.build(input_shape=(None, None, input_dim))
for k in range(num_layers):
weights1 = best_model.gru_layers[k].get_weights()
weights2 = population[j].gru_layers[k].get_weights()
new_weights = []
for w1, w2 in zip(weights1, weights2):
mask = np.random.rand(*w1.shape) < 0.5
new_weights.append(np.where(mask, w1, w2))
new_model.gru_layers[k].set_weights(new_weights)
weights1 = best_model.dense.get_weights()
weights2 = population[j].dense.get_weights()
new_weights = []
for w1, w2 in zip(weights1, weights2):
mask = np.random.rand(*w1.shape) < 0.5
new_weights.append(np.where(mask, w1, w2))
new_model.dense.set_weights(new_weights)
# 变异操作
for k in range(num_layers):
weights = new_model.gru_layers[k].get_weights()
for w in weights:
mask = np.random.rand(*w.shape) < 0.1
w[mask] += np.random.normal(scale=0.1, size=w[mask].shape)
new_model.gru_layers[k].set_weights(weights)
weights = new_model.dense.get_weights()
for w in weights:
mask = np.random.rand(*w.shape) < 0.1
w[mask] += np.random.normal(scale=0.1, size=w[mask].shape)
new_model.dense.set_weights(weights)
# 替换原个体
population[j] = new_model
# 返回最优模型
return best_model
```
希望这个代码示例能够对你有所帮助!
阅读全文