def hbf_T(self): v1 = np.array([self.X1[0], self.X1[1]]) v2 = np.array([self.X1[2], self.X1[3]]) v3 = np.array([self.X1[4], self.X1[5]]) v4 = np.array([self.X1[6], self.X1[7]]) s1 = np.sum(v1 ** 2) s2 = np.sum(v2 ** 2) s3 = np.sum(v3 ** 2) s4 = np.sum(v4 ** 2) v1 = v1 / np.sqrt(s1) v2 = v2 / np.sqrt(s2) v3 = v3 / np.sqrt(s3) v4 = v4 / np.sqrt(s4) # 将两个向量堆叠成2x2的矩阵 TT_1= np.vstack([v1, v3]).T TT_2= np.vstack([v2, v4]).T TT=np.vstack(TT_1,TT_2) return TT
时间: 2023-06-14 20:08:16 浏览: 86
β-地中海贫血表型的修饰因子――胎儿血红蛋白表达水平的分子调控
这段代码实现了一个函数 hbf_T,其功能是将四个二维向量按照一定规则组成一个2x2的矩阵。具体来说,首先对每个向量进行了归一化处理,然后将两个向量堆叠成2x2的矩阵。代码中使用了 numpy 库中的一些函数,如 np.array、np.sum、np.sqrt、np.vstack 等。其中,np.vstack 的作用是将多个数组按照行方向堆叠起来,形成一个新的数组。最后,函数返回了组合好的矩阵 TT。
阅读全文