无迹卡尔曼滤波基本原理
时间: 2024-05-14 22:11:20 浏览: 150
无迹卡尔曼滤波
无迹卡尔曼滤波(Unscented Kalman Filter,UKF)是一种用于非线性系统状态估计的滤波算法。与标准的卡尔曼滤波相比,UKF不需要对非线性函数进行线性化,能够更好地处理非线性问题。
UKF的基本原理是通过一种称为“无迹变换”的方法,将非线性函数的高斯分布转化为多元正态分布。这样就可以使用标准的卡尔曼滤波来进行状态估计。
具体来说,UKF将状态估计问题分为两个步骤:预测和更新。在预测步骤中,通过利用当前时刻的状态量和控制量,以及状态转移方程,预测下一个时刻的状态量和协方差矩阵。在更新步骤中,通过使用观测值和观测方程,根据贝叶斯公式更新预测的状态量和协方差矩阵。
无迹卡尔曼滤波具有良好的精度和稳定性,并且可以应用于各种非线性系统的状态估计问题。
阅读全文