rrt continuous-master rrt discrete-master

时间: 2024-02-06 11:00:55 浏览: 26
RRT Continuous-Master和RRT Discrete-Master是两种基于探索性增长树(Rapidly-Exploring Random Tree,简称RRT)算法的变种。 RRT Continuous-Master算法是在连续状态空间中应用的一种路径规划算法。它通过随机采样和连续状态转换来生成增长树,从而搜索并找到从起始点到目标点的最优路径。在连续状态空间中,它可以适用于机器人运动规划、自动驾驶等应用领域。RRT Continuous-Master算法具有较快的执行速度和较好的路径规划性能,但对于复杂的环境和非线性系统,可能存在计算复杂度较高的问题。 RRT Discrete-Master算法则是针对离散状态空间中的路径规划问题而设计的变种。它通过离散状态转换的方式进行增长树的生成,使每个状态都对应于一个离散的节点。RRT Discrete-Master算法通常应用于计算机游戏、智能体路径规划等领域,其主要优点是简化了状态空间的表示和搜索过程,减少了计算复杂度。然而,由于是在离散状态空间中操作,所以在某些情况下可能无法获得最优路径。 总的来说,RRT Continuous-Master和RRT Discrete-Master都是根据具体问题的状态空间特点来选择适用的路径规划算法。前者适用于连续状态空间,具有较好的执行速度和性能;而后者适用于离散状态空间,计算复杂度较低。
相关问题

rrt*-connect的python代码

### 回答1: rrt*-connect是一种路径规划算法,用于在给定的环境中找到两个已知点之间的最优路径。下面是一个基于Python语言实现的简单示例代码: ```python import numpy as np import matplotlib.pyplot as plt # 初始化rrt*-connect算法的节点类 class Node: def __init__(self, x, y): self.x = x self.y = y self.parent = None # 计算两个节点之间的距离 def distance(node1, node2): return np.sqrt((node1.x - node2.x)**2 + (node1.y - node2.y)**2) # 检查两个节点之间是否存在障碍物 def check_obstacle(node1, node2, obstacle_list): for obstacle in obstacle_list: distance_to_obstacle = np.sqrt((obstacle[0] - node1.x)**2 + (obstacle[1] - node1.y)**2) if distance_to_obstacle <= 1.0: return True return False # 使用rrt*-connect算法搜索路径 def rrt_connect(start, goal, obstacle_list): nodes_start = [start] nodes_goal = [goal] while True: # 从起点开始扩展树 random_node = Node(np.random.uniform(0, 10), np.random.uniform(0, 10)) nearest_node = nodes_start[0] for node in nodes_start: if distance(node, random_node) < distance(nearest_node, random_node): nearest_node = node if check_obstacle(nearest_node, random_node, obstacle_list): continue new_node = Node(random_node.x, random_node.y) new_node.parent = nearest_node nodes_start.append(new_node) # 从终点开始扩展树 random_node = Node(np.random.uniform(0, 10), np.random.uniform(0, 10)) nearest_node = nodes_goal[0] for node in nodes_goal: if distance(node, random_node) < distance(nearest_node, random_node): nearest_node = node if check_obstacle(nearest_node, random_node, obstacle_list): continue new_node = Node(random_node.x, random_node.y) new_node.parent = nearest_node nodes_goal.append(new_node) # 检查两颗树是否连接 for node1 in nodes_start: for node2 in nodes_goal: if distance(node1, node2) <= 1.0 and not check_obstacle(node1, node2, obstacle_list): return nodes_start, nodes_goal return None, None # 测试代码 start_node = Node(1, 1) goal_node = Node(9, 9) obstacles = [(5, 5), (6, 6), (7, 7)] path_start, path_goal = rrt_connect(start_node, goal_node, obstacles) if path_start is not None and path_goal is not None: path_start.append(path_goal[-1]) path = [] current_node = path_start[-1] while current_node is not None: path.append((current_node.x, current_node.y)) current_node = current_node.parent path.reverse() print("找到路径:", path) else: print("未找到路径") ``` 这段代码实现了一个简单的rrt*-connect算法,用于寻找起点和终点之间的最优路径。其中通过定义Node类表示路径上的节点,distance函数计算两个节点间的距离,check_obstacle函数用于检查两个节点间是否存在障碍物。主函数rrt_connect则是使用rrt*-connect算法进行路径搜索,并返回两个树的根节点列表。 最后进行测试,通过rrt_connect函数得到的路径点列表,再逆向遍历节点的parent指针,获取完整的路径。如果找到路径,则将其打印输出,否则输出未找到路径的信息。 ### 回答2: rrt*-connect算法是一种针对路径规划问题的改进型Rapidly-Exploring Random Tree (RRT) 算法。以下是一个简单的rrt*-connect的Python代码示例: ```python import numpy as np import matplotlib.pyplot as plt class Node: def __init__(self, x, y): self.x = x self.y = y self.parent = None def distance(node1, node2): return np.sqrt((node1.x - node2.x)**2 + (node1.y - node2.y)**2) def generate_random_node(x_range, y_range): x = np.random.uniform(x_range[0], x_range[1]) y = np.random.uniform(y_range[0], y_range[1]) return Node(x, y) def find_nearest_node(node_list, random_node): distances = [distance(node, random_node) for node in node_list] nearest_index = np.argmin(distances) return node_list[nearest_index] def is_collision_free(node1, node2, obstacles): # 检查路径上是否有碰撞 # 如果有碰撞,返回False;否则返回True # 这里省略碰撞检测的具体实现代码 return not collision_detected def rrt_connect(start, goal, x_range, y_range, obstacles): nodes = [start] while True: random_node = generate_random_node(x_range, y_range) nearest_node = find_nearest_node(nodes, random_node) new_node = Node(nearest_node.x + 0.1 * (random_node.x - nearest_node.x), nearest_node.y + 0.1 * (random_node.y - nearest_node.y)) if is_collision_free(nearest_node, new_node, obstacles): nodes.append(new_node) if distance(new_node, goal) < 0.1: return True, nodes if len(nodes) % 2 == 0: nodes = nodes[::-1] start = Node(1, 1) goal = Node(5, 5) x_range = [0, 10] y_range = [0, 10] obstacles = [[3, 3], [4, 4]] # 障碍物的位置 success, path = rrt_connect(start, goal, x_range, y_range, obstacles) if success: x = [node.x for node in path] y = [node.y for node in path] plt.plot(x, y, '-r') plt.xlim(x_range) plt.ylim(y_range) plt.show() ``` 这段代码描述了rrt*-connect的主要逻辑。它通过生成随机节点,寻找最近邻节点,并尝试从最近邻节点朝随机节点延伸,然后检查路径是否与障碍物相碰撞。如果延伸的路径安全,则将新节点添加到节点列表中。最终,如果找到一条从起始节点到目标节点的路径,则返回路径节点列表。如果找不到路径,则返回False。代码还包含了绘制路径的部分,以便可视化显示结果。请注意,代码中的碰撞检测部分需要根据具体的碰撞检测算法进行实现。 ### 回答3: rrt*-connect是一种改进版的快速随机树(Rapidly-exploring Random Trees,RRT)算法,用于路径规划。下面是一个使用Python编写的简要实现代码: ```python import numpy as np import matplotlib.pyplot as plt class Node: def __init__(self, x, y): self.x = x self.y = y self.parent = None def dist(self, other): return np.sqrt((self.x - other.x)**2 + (self.y - other.y)**2) class RRTConnect: def __init__(self, start, goal, obstacles, step_size=0.5, max_iters=1000): self.start = Node(*start) self.goal = Node(*goal) self.obstacles = obstacles self.step_size = step_size self.max_iters = max_iters def generate_random_point(self): x = np.random.uniform(0, 10) # 计划空间的x范围 y = np.random.uniform(0, 10) # 计划空间的y范围 return Node(x, y) def find_nearest_node(self, tree, point): distances = [node.dist(point) for node in tree] return tree[np.argmin(distances)] def generate_new_node(self, nearest_node, random_node): distance = nearest_node.dist(random_node) if distance <= self.step_size: return random_node else: scale = self.step_size / distance x = nearest_node.x + (random_node.x - nearest_node.x) * scale y = nearest_node.y + (random_node.y - nearest_node.y) * scale return Node(x, y) def is_collision_free(self, node1, node2): for obstacle in self.obstacles: if obstacle[0] < node1.x < obstacle[1] and obstacle[2] < node1.y < obstacle[3]: return False if obstacle[0] < node2.x < obstacle[1] and obstacle[2] < node2.y < obstacle[3]: return False return True def rrt_connect(self): tree1 = [self.start] tree2 = [self.goal] for _ in range(self.max_iters): random_node = self.generate_random_point() nearest_node1 = self.find_nearest_node(tree1, random_node) nearest_node2 = self.find_nearest_node(tree2, random_node) new_node1 = self.generate_new_node(nearest_node1, random_node) new_node2 = self.generate_new_node(nearest_node2, random_node) if self.is_collision_free(nearest_node1, new_node1): tree1.append(new_node1) if self.is_collision_free(nearest_node2, new_node1): path = self.connect_trees(tree1, tree2, nearest_node1, new_node2) if path: return path if self.is_collision_free(nearest_node2, new_node2): tree2.append(new_node2) if self.is_collision_free(nearest_node1, new_node2): path = self.connect_trees(tree1, tree2, nearest_node1, new_node2) if path: return path return None def connect_trees(self, tree1, tree2, node1, node2): path = [] while node1.parent: path.append([node1.x, node1.y]) node1 = node1.parent path.append([self.start.x, self.start.y]) path = path[::-1] while node2.parent: path.append([node2.x, node2.y]) node2 = node2.parent path.append([self.goal.x, self.goal.y]) return path # Usage example: start = [1, 1] # 起点 goal = [9, 9] # 终点 obstacles = [[3, 4, 2, 5], [7, 9, 6, 8]] # 障碍物坐标范围,例如[x1, x2, y1, y2] rrt = RRTConnect(start, goal, obstacles) path = rrt.rrt_connect() print("路径点坐标:", path) # 绘制路径 if path: path = np.array(path) plt.plot(path[:,0], path[:,1], '-o') for obstacle in obstacles: plt.fill([obstacle[0], obstacle[0], obstacle[1], obstacle[1]], [obstacle[2], obstacle[3], obstacle[3], obstacle[2]], 'r') plt.xlim(0, 10) plt.ylim(0, 10) plt.show() ``` 以上是一个简单的RRT*-connect算法的Python实现。代码实现了通过随机扩展树的方式来寻找起点到终点的路径,并考虑了障碍物的碰撞检测。

rrt、rrt*、rrt*-fn对比试验

rrt (快速随机树)、rrt* (快速随机树改进版)和rrt*-fn (带有优先级采样的改进版) 是三种不同的路径规划算法。它们都是用来解决机器人或者其他自主系统自主路径规划问题的。 首先,rrt 算法是快速随机树算法,它通过随机采样和逐步扩展树结构,来寻找机器人的可行路径。rrt* 算法在 rrt 的基础上进行了改进,引入了优化机制,能够更快地找到最优路径。而 rrt*-fn 算法则是rrt*的改进版,它在rrt*的基础上加入了优先级采样机制,使得算法更加有效率。 在对比试验中,可以发现rrt 算法相对于 rrt* 和 rrt*-fn 在寻找最优路径的速度和效率上是稍显不足的。rrt* 算法则能够更快地找到具有更好代价的最优路径,但在处理大规模环境时仍有一定的局限性。而 rrt*-fn 算法则在对复杂环境进行路径规划时表现更为出色,具有较好的全局搜索能力和路径优化能力。 综上所述,rrt* 和 rrt*-fn 算法相比于传统的 rrt 算法能够更快更准确地找到最优路径。而 rrt*-fn 算法在处理复杂环境时表现更为出色,具备更好的全局路径规划能力。因此,在实际应用中,需要根据具体的任务需求和环境特点选择合适的路径规划算法。

相关推荐

最新推荐

Xabber客户端.zip

android 源码学习. 资料部分来源于合法的互联网渠道收集和整理,供大家学习参考与交流。本人不对所涉及的版权问题或内容负法律责任。如有侵权,请通知本人删除。感谢CSDN官方提供大家交流的平台

2023年中国辣条食品行业创新及消费需求洞察报告.pptx

随着时间的推移,中国辣条食品行业在2023年迎来了新的发展机遇和挑战。根据《2023年中国辣条食品行业创新及消费需求洞察报告》,辣条食品作为一种以面粉、豆类、薯类等原料为基础,添加辣椒、调味料等辅料制成的食品,在中国市场拥有着广阔的消费群体和市场潜力。 在行业概述部分,报告首先介绍了辣条食品的定义和分类,强调了辣条食品的多样性和口味特点,满足消费者不同的口味需求。随后,报告回顾了辣条食品行业的发展历程,指出其经历了从传统手工制作到现代化机械生产的转变,市场规模不断扩大,产品种类也不断增加。报告还指出,随着消费者对健康饮食的关注增加,辣条食品行业也开始向健康、营养的方向发展,倡导绿色、有机的生产方式。 在行业创新洞察部分,报告介绍了辣条食品行业的创新趋势和发展动向。报告指出,随着科技的不断进步,辣条食品行业在生产工艺、包装设计、营销方式等方面都出现了新的创新,提升了产品的品质和竞争力。同时,报告还分析了未来可能出现的新产品和新技术,为行业发展提供了新的思路和机遇。 消费需求洞察部分则重点关注了消费者对辣条食品的需求和偏好。报告通过调查和分析发现,消费者在选择辣条食品时更加注重健康、营养、口味的多样性,对产品的品质和安全性提出了更高的要求。因此,未来行业需要加强产品研发和品牌建设,提高产品的营养价值和口感体验,以满足消费者不断升级的需求。 在市场竞争格局部分,报告对行业内主要企业的市场地位、产品销量、市场份额等进行了分析比较。报告发现,中国辣条食品行业竞争激烈,主要企业之间存在着激烈的价格战和营销竞争,产品同质化严重。因此,企业需要加强品牌建设,提升产品品质,寻求差异化竞争的突破口。 最后,在行业发展趋势与展望部分,报告对未来辣条食品行业的发展趋势进行了展望和预测。报告认为,随着消费者对健康、有机食品的需求增加,辣条食品行业将进一步向健康、营养、绿色的方向发展,加强与农业合作,推动产业升级。同时,随着科技的不断进步,辣条食品行业还将迎来更多的创新和发展机遇,为行业的持续发展注入新的动力。 综上所述,《2023年中国辣条食品行业创新及消费需求洞察报告》全面深入地分析了中国辣条食品行业的发展现状、创新动向和消费需求,为行业的未来发展提供了重要的参考和借鉴。随着消费者消费观念的不断升级和科技的持续发展,中国辣条食品行业有望迎来更加广阔的发展空间,实现可持续发展和行业繁荣。

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

学习率衰减策略及调参技巧:在CNN中的精准应用指南

# 1. 学习率衰减策略概述 学习率衰减是深度学习中常用的优化技巧,旨在调整模型训练时的学习率,以提高模型性能和收敛速度。在训练迭代过程中,通过逐步减小学习率的数值,模型在接近收敛时可以更精细地调整参数,避免在局部最优点处震荡。学习率衰减策略种类繁多,包括固定衰减率、指数衰减、阶梯衰减和余弦衰减等,每种方法都有适用的场景和优势。掌握不同学习率衰减策略,可以帮助深度学习从业者更好地训练和调优模型。 # 2. 深入理解学习率衰减 学习率衰减在深度学习中扮演着重要的角色,能够帮助模型更快地收敛,并提高训练效率和泛化能力。在本章节中,我们将深入理解学习率衰减的基本概念、原理以及常见方法。 ##

如何让restTemplate call到一个mock的数据

要使用 `RestTemplate` 调用一个模拟的数据,你可以使用 `MockRestServiceServer` 类来模拟服务端的响应。下面是一个示例代码: ```java import org.springframework.http.HttpMethod; import org.springframework.http.HttpStatus; import org.springframework.http.MediaType; import org.springframework.http.ResponseEntity; import org.springframework.test

2023年半导体行业20强品牌.pptx

2023年半导体行业20强品牌汇报人文小库于2024年1月10日提交了《2023年半导体行业20强品牌》的报告,报告内容主要包括品牌概述、产品线分析、技术创新、市场趋势和品牌策略。根据报告显示的数据和分析,可以看出各品牌在半导体行业中的综合实力和发展情况。 在品牌概述部分,文小库对2023年半导体行业20强品牌进行了排名,主要根据市场份额、技术创新能力和品牌知名度等多个指标进行评估。通过综合评估,得出了各品牌在半导体行业中的排名,并分析了各品牌的市场份额变化情况,了解了各品牌在市场中的竞争态势和发展趋势。此外,还对各品牌的品牌影响力进行了分析,包括对行业发展的推动作用和对消费者的影响力等方面进行评估,从品牌知名度和品牌价值两个维度来评判各品牌的实力。 在产品线分析部分,报告详细描述了微处理器在半导体行业中的核心地位,这是主要应用于计算机、手机、平板等智能终端设备中的关键产品。通过对产品线进行详细分析,可以了解各品牌在半导体领域中的产品布局和市场表现,为后续的市场策略制定提供了重要的参考信息。 在技术创新方面,报告也对各品牌在技术创新方面的表现进行了评估,这是半导体行业发展的关键驱动力之一。通过分析各品牌在技术研发、产品设计和生产制造等方面的创新能力,可以评判各品牌在未来发展中的竞争优势和潜力,为品牌策略的制定提供重要依据。 在市场趋势和品牌策略方面,报告分析了半导体行业的发展趋势和竞争格局,为各品牌制定市场策略和品牌推广提供了重要参考。针对未来市场发展的趋势,各品牌需要不断加强技术创新、提升品牌影响力,以及制定有效的市场推广策略,来保持在行业中的竞争优势。 综上所述,在2023年半导体行业20强品牌报告中,通过对各品牌的综合排名、产品线分析、技术创新、市场趋势和品牌策略等方面的评估和分析,展现了各品牌在半导体行业中的实力和发展状态,为半导体行业的未来发展提供了重要的参考和指导。

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

量化与剪枝技术在CNN模型中的神奇应用及效果评估

![量化与剪枝技术在CNN模型中的神奇应用及效果评估](https://img-blog.csdnimg.cn/34b16fbb2b55412189fa4338f334e842.png) # 1. 量化与剪枝技术在CNN模型中的概览 在深度学习领域,量化与剪枝技术作为优化模型的重要手段,近年来备受关注。量化技术主要通过减少模型参数的位数,降低模型的计算复杂度,进而提升模型的推理速度。而剪枝技术则通过去除冗余的连接和神经元,减小模型的规模,提高模型的泛化能力和效率。本章将对这两项技术进行综述,为后续章节的深入探讨奠定基础。 # 2. 深入理解量化技术 ### 2.1 量化技术概述 量化技术

已知某一单位向量,现需将坐标轴z轴旋转到该单位向量方向,求旋转映射矩阵

旋转映射矩阵可以通过以下步骤得到: 1. 首先,找到单位向量所在的旋转平面。这个平面由单位向量和一个垂直于它的向量确定。我们可以选择任意一个垂直于单位向量的向量作为旋转平面的法向量。 2. 使用单位向量和选择的法向量来构建一个正交基。这可以通过将单位向量和法向量归一化,并使用叉乘来得到第三个正交向量。 3. 将构建的正交基作为列向量组成一个旋转矩阵。 举例来说,假设单位向量为 v = [x, y, z]。我们可以选择法向量为 [1, 0, 0](如果 v 和 x 轴平行,则选择 [0, 1, 0])。然后,通过叉乘计算第三个正交向量 n = v × [1, 0, 0]。 然后,我们将

2023年全球电力行业评论.pptx

2023年全球电力行业评论汇报人:文小库 在2023年全球电力行业概述方面,全球电力行业规模不断扩大,并保持稳定增长。随着经济的发展和人口的增长,电力需求持续攀升。特别是在新兴市场国家,电力需求增长较快。全球电力行业结构多样化,包括国有电力企业、私有电力企业以及合作社等模式。为了确保电力供应的稳定和安全,电力行业运营高度复杂,需要建设和维护庞大的电网系统。 在未来发展趋势方面,可再生能源、智能电网、电力储存等技术的发展将推动全球电力行业朝着清洁化、智能化的方向发展。随着环保意识的提高和科技的进步,可再生能源有望逐渐成为全球电力行业的主导能源,引起电力行业更加注重能源的可持续性和环保性。 2013年各国电力行业发展状况中,美国电力行业在2023年保持稳定增长,总发电量达到4.5万亿千瓦时,同比增长2.3%。美国加大了对清洁能源的投资,特别是在太阳能和风能方面取得了很大进展。中国电力行业在2023年也保持了良好的增长势头,尤其在可再生能源领域取得了显著进展。印度电力行业在2023年也呈现出快速增长的态势,特别是在智能电网建设和电力储存技术方面取得了突破。 全球电力市场分析方面,各国电力市场呈现出多样化的特点,随着能源结构调整和技术创新的不断推动,电力市场竞争日趋激烈。全球电力行业政策与法规方面,各国纷纷出台了促进可再生能源发展和减少碳排放的政策措施,以应对气候变化和环境污染等挑战。 在技术创新与进步方面,全球电力行业在2023年取得了显著的进展,尤其是在智能电网、电力储存、电动车充电技术等领域取得了重大突破。这些技术的发展将为电力行业转型升级提供重要支撑,推动电力行业向着更加清洁、智能和高效的方向发展。 总的来看,全球电力行业面临着诸多挑战和机遇。在挑战方面,电力需求持续增长、能源结构调整、环境污染和气候变化等问题亟待解决。而在机遇方面,技术创新和政策支持将为电力行业带来新的增长点和发展契机。未来,全球电力行业有望实现更加可持续、清洁和智能的发展,为打造绿色低碳的能源体系作出更大贡献。